考研数学:定积分的换元法
定积分换元法原理
设函数\(f(x)\)在区间\([a,b]\)上连续,函数\(x = \varphi(t)\)满足以下条件:
\(\varphi(\alpha)=a\),\(\varphi(\beta)=b\)。
\(\varphi(t)\)在\([\alpha,\beta]\)(或\([\beta,\alpha]\))上具有连续导数,且其值域\(R_{\varphi}\subseteq[a,b]\)。
那么有\(\int_{a}^{b}f(x)dx=\int_{\alpha}^{\beta}f[\varphi(t)]\varphi^\prime(t)dt\)。
在使用换元法时,关键是要选择合适的换元函数,同时要注意积分上下限的变换。
1. 根式换元
原理:当被积函数中含有根式时,通过换元将根式去掉,简化积分。例如,对于形如\(\int f(\sqrt{ax + b})dx\)的积分,可以令\(t=\sqrt{ax + b}\),则\(x=\frac{t^{2}-b}{a}\),\(dx=\frac{2t}{a}dt\)。
示例:计算\(\int_{0}^{1}\frac{1}{\sqrt{x + 1}}dx\)。令\(t = \sqrt{x + 1}\),则\(x=t^{2}-1\),\(dx = 2tdt\)。当\(x = 0\)时,\(t = 1\);当\(x = 1\)时,\(t=\sqrt{2}\)。原式变为\(\int_{1}^{\sqrt{2}}\frac{2t}{t}dt=2\int_{1}^{\sqrt{2}}1dt = 2(\sqrt{2}-1)\)。
2. 三角函数换元
原理:
对于形如\(\int f(\sqrt{a^{2}-x^{2}})dx\)(\(a>0\)),可令\(x = a\sin t\),\(dx=a\cos tdt\),因为\(\sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2}\sin^{2}t}=a\cos t\)。
对于形如\(\int f(\sqrt{x^{2}-a^{2}})dx\)(\(a>0\)),可令\(x = a\sec t\),\(dx=a\sec t\tan tdt\),此时\(\sqrt{x^{2}-a^{2}}=\sqrt{a^{2}\sec^{2}t - a^{2}}=a\tan t\)。
对于形如\(\int f(\sqrt{x^{2}+a^{2}})dx\)(\(a>0\)),可令\(x = a\tan t\),\(dx=a\sec^{2}tdt\),且\(\sqrt{x^{2}+a^{2}}=\sqrt{a^{2}\tan^{2}t + a^{2}}=a\sec t\)。
示例:计算\(\int_{0}^{a}\sqrt{a^{2}-x^{2}}dx\)(\(a>0\))。令\(x = a\sin t\),\(dx=a\cos tdt\),当\(x = 0\)时,\(t = 0\);当\(x = a\)时,\(t=\frac{\pi}{2}\)。原式变为\(\int_{0}^{\frac{\pi}{2}}\sqrt{a^{2}-a^{2}\sin^{2}t}\times a\cos tdt=\int_{0}^{\frac{\pi}{2}}a^{2}\cos^{2}tdt=\frac{a^{2}}{2}\int_{0}^{\frac{\pi}{2}}(1 + \cos2t)dt=\frac{\pi a^{2}}{4}\)。
3. 倒代换
原理:当被积函数的分母中\(x\)的次数较高时,可考虑倒代换,即令\(t=\frac{1}{x}\),则\(x=\frac{1}{t}\),\(dx=-\frac{1}{t^{2}}dt\)。这种换元方式可以降低分母中\(x\)的次数,使积分更容易计算。
示例:计算\(\int_{1}^{+\infty}\frac{1}{x\sqrt{x^{2}-1}}dx\)。令\(t=\frac{1}{x}\),\(dx = -\frac{1}{t^{2}}dt\)。当\(x = 1\)时,\(t = 1\);当\(x\to+\infty\)时,\(t\to0^{+}\)。原式变为\(\int_{0}^{1}\frac{t}{\sqrt{1 - t^{2}}}(-dt)=\int_{0}^{1}\frac{t}{\sqrt{1 - t^{2}}}dt\),再令\(u = 1 - t^{2}\),\(du=-2tdt\),进一步计算可得\(\int_{0}^{1}\frac{t}{\sqrt{1 - t^{2}}}dt=\frac{1}{2}\int_{0}^{1}\frac{1}{\sqrt{u}}du=\frac{1}{2}\times2\sqrt{u}\big|_{0}^{1}=1\)。
4. 指数函数换元
原理:当被积函数中含有指数函数\(e^{x}\)时,可令\(t = e^{x}\),则\(dx=\frac{1}{t}dt\)。这种换元方法常用于将含有指数函数的积分转化为更易于处理的形式。
示例:计算\(\int_{0}^{1}\frac{e^{x}}{1 + e^{2x}}dx\)。令\(t = e^{x}\),则\(dx=\frac{1}{t}dt\),当\(x = 0\)时,\(t = 1\);当\(x = 1\)时,\(t = e\)。原式变为\(\int_{1}^{e}\frac{1}{1 + t^{2}}dt=\arctan t\big|_{1}^{e}=\arctan e-\arctan1=\arctan e-\frac{\pi}{4}\)。
5. 对数函数换元
原理:如果被积函数中含有对数函数\(\ln x\),可令\(t=\ln x\),则\(x = e^{t}\),\(dx = e^{t}dt\)。通过这种换元,可以将对数函数与其他函数的复合形式转化为更简单的形式进行积分。
示例:计算\(\int_{1}^{e}\frac{\ln x}{x}dx\)。令\(t=\ln x\),则\(dt=\frac{1}{x}dx\),当\(x = 1\)时,\(t = 0\);当\(x = e\)时,\(t = 1\)。原式变为\(\int_{0}^{1}tdt=\frac{1}{2}t^{2}\big|_{0}^{1}=\frac{1}{2}\)。
例1:计算\(\int_{0}^{1}(2x + 1)^{3}dx\)
令\(t = 2x+1\),则\(dt = 2dx\),当\(x = 0\)时,\(t = 1\);当\(x = 1\)时,\(t = 3\)。
原式\(=\frac{1}{2}\int_{1}^{3}t^{3}dt=\frac{1}{2}\times\frac{1}{4}t^{4}\big|_{1}^{3}=\frac{1}{8}(3^{4}-1^{4})=\frac{1}{8}(81 - 1)=10\)
例2:计算\(\int_{0}^{\sqrt{\pi}}x\cos(x^{2})dx\)
令\(t = x^{2}\),则\(dt = 2xdx\),当\(x = 0\)时,\(t = 0\);当\(x=\sqrt{\pi}\)时,\(t=\pi\)。
原式\(=\frac{1}{2}\int_{0}^{\pi}\cos tdt=\frac{1}{2}\sin t\big|_{0}^{\pi}=\frac{1}{2}(\sin\pi - \sin0)=0\)
例3:计算\(\int_{1}^{4}\frac{1}{\sqrt{x}(1 + \sqrt{x})}dx\)
令\(t=\sqrt{x}\),则\(dx = 2tdt\),当\(x = 1\)时,\(t = 1\);当\(x = 4\)时,\(t = 2\)。
原式\(=2\int_{1}^{2}\frac{1}{t(1 + t)}dt = 2\int_{1}^{2}(\frac{1}{t}-\frac{1}{1 + t})dt=2[\ln t-\ln(1 + t)]_{1}^{2}=2[\ln\frac{2}{1 + 2}-\ln\frac{1}{1 + 1}]=2\ln\frac{4}{3}\)
例4:计算\(\int_{0}^{2}\sqrt{4 - x^{2}}dx\)
令\(x = 2\sin t\),则\(dx = 2\cos tdt\),当\(x = 0\)时,\(t = 0\);当\(x = 2\)时,\(t=\frac{\pi}{2}\)。
原式\(=\int_{0}^{\frac{\pi}{2}}\sqrt{4 - 4\sin^{2}t}\times2\cos tdt=\int_{0}^{\frac{\pi}{2}}4\cos^{2}tdt = 2\int_{0}^{\frac{\pi}{2}}(1 + \cos2t)dt=2\left[t+\frac{1}{2}\sin2t\right]_{0}^{\frac{\pi}{2}}=\pi\)
例5:计算\(\int_{0}^{1}\frac{x^{2}}{(1 + x^{3})^{2}}dx\)
令\(t = 1 + x^{3}\),则\(dt = 3x^{2}dx\),当\(x = 0\)时,\(t = 1\);当\(x = 1\)时,\(t = 2\)。
原式\(=\frac{1}{3}\int_{1}^{2}\frac{1}{t^{2}}dt=-\frac{1}{3}\frac{1}{t}\big|_{1}^{2}=-\frac{1}{3}(\frac{1}{2}-1)=\frac{1}{6}\)
例6:计算\(\int_{-1}^{1}\frac{x}{\sqrt{5 - 4x}}dx\)
令\(t=\sqrt{5 - 4x}\),则\(x=\frac{5 - t^{2}}{4}\),\(dx=-\frac{t}{2}dt\),当\(x=-1\)时,\(t = 3\);当\(x = 1\)时,\(t = 1\)。
因为被积函数是奇函数,所以\(\int_{-1}^{1}\frac{x}{\sqrt{5 - 4x}}dx = 0\)
例7:计算\(\int_{0}^{a}\sqrt{a^{2}-x^{2}}dx\)(\(a>0\))
令\(x = a\sin t\),则\(dx = a\cos tdt\),当\(x = 0\)时,\(t = 0\);当\(x = a\)时,\(t=\frac{\pi}{2}\)。
原式\(=\int_{0}^{\frac{\pi}{2}}\sqrt{a^{2}-a^{2}\sin^{2}t}\times a\cos tdt=\int_{0}^{\frac{\pi}{2}}a^{2}\cos^{2}tdt=\frac{a^{2}}{2}\int_{0}^{\frac{\pi}{2}}(1 + \cos2t)dt=\frac{\pi a^{2}}{4}\)
例8:计算\(\int_{0}^{\ln2}e^{x}\sqrt{1 - e^{2x}}dx\)
令\(t = e^{x}\),则\(dt = e^{x}dx\),当\(x = 0\)时,\(t = 1\);当\(x=\ln2\)时,\(t = 2\)。
原式\(=\int_{1}^{2}\sqrt{1 - t^{2}}dt\)
再令\(t=\sin\theta\),\(dt=\cos\theta d\theta\),当\(t = 1\)时,\(\theta=\frac{\pi}{2}\);当\(t = 2\)(这里\(t\)的范围超出了\(\sin\theta\)的正常范围,但是我们可以形式上继续计算),假设\(\theta=\arcsin2\)(这里只是形式上的表示)。
\(=\int_{\frac{\pi}{2}}^{\arcsin2}\cos\theta\times\cos\theta d\theta=\int_{\frac{\pi}{2}}^{\arcsin2}\cos^{2}\theta d\theta\)
\(=\frac{1}{2}\int_{\frac{\pi}{2}}^{\arcsin2}(1 + \cos2\theta)d\theta\)
由于\(\arcsin2\)不存在实际意义,我们发现换元\(t = e^{x}\)后,计算出现错误,应该重新思考换元方式。
令\(e^{x}=\sin t\),则\(x = \ln(\sin t)\),\(dx=\frac{\cos t}{\sin t}dt\),当\(x = 0\)时,\(t=\frac{\pi}{2}\);当\(x=\ln2\)时,\(t=\arcsin2\)(这里错误,因为\(\sin t\)最大值为\(1\),应该换元为\(e^{x}=\sin u\),\(dx=\frac{\cos u}{\sin u}du\),当\(x = 0\)时,\(u=\frac{\pi}{2}\);当\(x=\ln2\)时,\(u=\arcsin\frac{1}{2}=\frac{\pi}{6}\))
原式\(=\int_{\frac{\pi}{2}}^{\frac{\pi}{6}}\sqrt{1 - \sin^{2}u}\times\frac{\cos u}{\sin u}du=-\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\frac{\cos^{2}u}{\sin u}du\)
\(=-\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\frac{1 - \sin^{2}u}{\sin u}du=-\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(\csc u-\sin u)du\)
\(=-[\ln|\csc u-\cot u|+\cos u]_{\frac{\pi}{6}}^{\frac{\pi}{2}}=\ln(2 + \sqrt{3})-\frac{\sqrt{3}}{2}\)
例9:计算\(\int_{1}^{e}\frac{\ln x}{x}dx\)
令\(t=\ln x\),则\(dt=\frac{1}{x}dx\),当\(x = 1\)时,\(t = 0\);当\(x = e\)时,\(t = 1\)。
原式\(=\int_{0}^{1}tdt=\frac{1}{2}t^{2}\big|_{0}^{1}=\frac{1}{2}\)
例10:计算\(\int_{0}^{2}\frac{1}{(3 - x)^{2}}dx\)
令\(t = 3 - x\),则\(dx=-dt\),当\(x = 0\)时,\(t = 3\);当\(x = 2\)时,\(t = 1\)。
原式\(=\int_{3}^{1}\frac{1}{t^{2}}(-dt)=\int_{1}^{3}\frac{1}{t^{2}}dt=-\frac{1}{t}\big|_{1}^{3}=-\left(\frac{1}{3}-1\right)=\frac{2}{3}\)
例11:计算\(\int_{0}^{\frac{\pi}{2}}\sin^{3}x\cos xdx\)
令\(t=\sin x\),则\(dt=\cos xdx\),当\(x = 0\)时,\(t = 0\);当\(x=\frac{\pi}{2}\)时,\(t = 1\)。
原式\(=\int_{0}^{1}t^{3}dt=\frac{1}{4}t^{4}\big|_{0}^{1}=\frac{1}{4}\)
例12:计算\(\int_{0}^{1}\frac{dx}{(1 + x^{2})^{2}}\)
令\(x=\tan t\),则\(dx=\sec^{2}tdt\),当\(x = 0\)时,\(t = 0\);当\(x = 1\)时,\(t=\frac{\pi}{4}\)。
原式\(=\int_{0}^{\frac{\pi}{4}}\frac{\sec^{2}t}{(\sec^{2}t)^{2}}dt=\int_{0}^{\frac{\pi}{4}}\cos^{2}tdt=\frac{1}{2}\int_{0}^{\frac{\pi}{4}}(1 + \cos2t)dt=\frac{1}{2}\left[t+\frac{1}{2}\sin2t\right]_{0}^{\frac{\pi}{4}}=\frac{\pi + 2}{8}\)
例13:计算\(\int_{-2}^{2}\frac{x^{3}\sin^{2}x}{1 + x^{2}}dx\)
因为被积函数\(\frac{x^{3}\sin^{2}x}{1 + x^{2}}\)是奇函数,所以\(\int_{-2}^{2}\frac{x^{3}\sin^{2}x}{1 + x^{2}}dx = 0\)
例14:计算\(\int_{0}^{1}\frac{e^{x}}{1 + e^{2x}}dx\)
令\(t = e^{x}\),则\(dt = e^{x}dx\),当\(x = 0\)时,\(t = 1\);当\(x = 1\)时,\(t = e\)。
原式\(=\int_{1}^{e}\frac{1}{1 + t^{2}}dt=\arctan t\big|_{1}^{e}=\arctan e-\arctan1=\arctan e-\frac{\pi}{4}\)
例15:计算\(\int_{0}^{\frac{\pi}{2}}\frac{\cos x}{1 + \sin^{2}x}dx\)
令\(t=\sin x\),则\(dt=\cos xdx\),当\(x = 0\)时,\(t = 0\);当\(x=\frac{\pi}{2}\)时,\(t = 1\)。
原式\(=\int_{0}^{1}\frac{1}{1 + t^{2}}dt=\arctan t\big|_{0}^{1}=\frac{\pi}{4}\)
例16:计算\(\int_{0}^{3}\frac{x}{\sqrt{1 + x}}dx\)
令\(t=\sqrt{1 + x}\),则\(x = t^{2}-1\),\(dx = 2tdt\),当\(x = 0\)时,\(t = 1\);当\(x = 3\)时,\(t = 2\)。
原式\(=\int_{1}^{2}\frac{t^{2}-1}{t}\times2tdt=2\int_{1}^{2}(t^{2}-1)dt=2\left[\frac{1}{3}t^{3}-t\right]_{1}^{2}=2\left(\frac{8}{3}-2-\frac{1}{3}+1\right)=\frac{8}{3}\)
例17:计算\(\int_{0}^{1}\frac{1 - x^{2}}{1 + x^{2}}dx\)
先将被积函数化简为\(\int_{0}^{1}\frac{2-(1 + x^{2})}{1 + x^{2}}dx=\int_{0}^{1}(2\times\frac{1}{1 + x^{2}}-1)dx\)
\(=2\int_{0}^{1}\frac{1}{1 + x^{2}}dx-\int_{0}^{1}1dx\)
\(=2\arctan x\big|_{0}^{1}-x\big|_{0}^{1}=2\times\frac{\pi}{4}-1=\frac{\pi}{2}-1\)
例18:计算\(\int_{0}^{1}\sqrt{1 - (x - 1)^{2}}dx\)
令\(x - 1=\sin t\),则\(dx=\cos tdt\),当\(x = 0\)时,\(t = -\frac{\pi}{2}\);当\(x = 1\)时,\(t = 0\)。
原式\(=\int_{-\frac{\pi}{2}}^{0}\sqrt{1 - \sin^{2}t}\cos tdt=\int_{-\frac{\pi}{2}}^{0}\cos^{2}tdt=\frac{1}{2}\int_{-\frac{\pi}{2}}^{0}(1 + \cos2t)dt=\frac{\pi}{4}\)
例19:计算\(\int_{0}^{\frac{1}{2}}\frac{1}{\sqrt{1 - x^{2}}}dx\)
令\(x=\sin t\),则\(dx=\cos tdt\),当\(x = 0\)时,\(t = 0\);当\(x=\frac{1}{2}\)时,\(t=\frac{\pi}{6}\)。
原式\(=\int_{0}^{\frac{\pi}{6}}\frac{\cos t}{\sqrt{1 - \sin^{2}t}}dt=\int_{0}^{\frac{\pi}{6}}1dt=\frac{\pi}{6}\)
例20:计算\(\int_{1}^{2}\frac{\sqrt{x^{2}-1}}{x}dx\)
令\(x=\sec t\),则\(dx=\sec t\tan tdt\),当\(x = 1\)时,\(t = 0\);当\(x = 2\)时,\(t=\arccos\frac{1}{2}=\frac{\pi}{3}\)。
原式\(=\int_{0}^{\frac{\pi}{3}}\frac{\tan t}{\sec t}\times\sec t\tan tdt=\int_{0}^{\frac{\pi}{3}}\tan^{2}tdt=\int_{0}^{\frac{\pi}{3}}(\sec^{2}t - 1)dt\)