考研数学:无穷小 \(\lim_{x\to x_{0}}f(x)=0\)

1. 无穷小的定义

若函数\(f(x)\)当\(x\to x_{0}\)(或\(x\to\infty\))时的极限为零,则称函数\(f(x)\)为当\(x\to x_{0}\)(或\(x\to\infty\))时的无穷小。

例如,当\(x\to0\)时,函数\(y = x\)是无穷小,因为\(\lim_{x\to0}x = 0\);当\(x\to\infty\)时,\(y=\frac{1}{x}\)是无穷小,因为\(\lim_{x\to\infty}\frac{1}{x}=0\)。

2. 无穷小的性质

性质1:有限个无穷小的和还是无穷小

设\(\alpha(x)\)和\(\beta(x)\)是当\(x\to x_{0}\)时的无穷小,即\(\lim_{x\to x_{0}}\alpha(x)=0\),\(\lim_{x\to x_{0}}\beta(x)=0\)。

令\(\gamma(x)=\alpha(x)+\beta(x)\),对于任意给定的\(\varepsilon>0\),因为\(\lim_{x\to x_{0}}\alpha(x)=0\),所以存在\(\delta_{1}>0\),当\(0 < \vert x - x_{0}\vert < \delta_{1}\)时,\(\vert\alpha(x)\vert < \frac{\varepsilon}{2}\);同理,因为\(\lim_{x\to x_{0}}\beta(x)=0\),存在\(\delta_{2}>0\),当\(0 < \vert x - x_{0}\vert < \delta_{2}\)时,\(\vert\beta(x)\vert < \frac{\varepsilon}{2}\)。

取\(\delta=\min\{\delta_{1},\delta_{2}\}\),当\(0 < \vert x - x_{0}\vert < \delta\)时,\(\vert\gamma(x)\vert=\vert\alpha(x)+\beta(x)\vert\leqslant\vert\alpha(x)\vert+\vert\beta(x)\vert < \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\),所以\(\lim_{x\to x_{0}}\gamma(x)=0\),即\(\alpha(x)+\beta(x)\)是无穷小。例如,当\(x\to0\)时,\(x\)和\(x^{2}\)都是无穷小,\(x + x^{2}\)也是无穷小。

性质2:有界函数与无穷小的乘积是无穷小

设函数\(u(x)\)在\(x\to x_{0}\)的某邻域内有界,即存在\(M>0\)和\(\delta_{1}>0\),当\(0 < \vert x - x_{0}\vert < \delta_{1}\)时,\(\vert u(x)\vert\leqslant M\);设\(\alpha(x)\)是当\(x\to x_{0}\)时的无穷小,即\(\lim_{x\to x_{0}}\alpha(x)=0\)。

对于任意给定的\(\varepsilon>0\),因为\(\lim_{x\to x_{0}}\alpha(x)=0\),存在\(\delta_{2}>0\),当\(0 < \vert x - x_{0}\vert < \delta_{2}\)时,\(\vert\alpha(x)\vert < \frac{\varepsilon}{M}\)。

取\(\delta=\min\{\delta_{1},\delta_{2}\}\),当\(0 < \vert x - x_{0}\vert < \delta\)时,\(\vert u(x)\alpha(x)\vert=\vert u(x)\vert\vert\alpha(x)\vert\leqslant M\cdot\frac{\varepsilon}{M}=\varepsilon\),所以\(\lim_{x\to x_{0}}u(x)\alpha(x)=0\)。例如,当\(x\to0\)时,\(\sin x\)是有界函数(\(\vert\sin x\vert\leqslant1\)),\(x\)是无穷小,所以\(x\sin x\)是无穷小。

性质3:有限个无穷小的乘积是无穷小

设\(\alpha(x)\)、\(\beta(x)\)是当\(x\to x_{0}\)时的无穷小,令\(\gamma(x)=\alpha(x)\beta(x)\)。

对于任意给定的\(\varepsilon>0\),因为\(\lim_{x\to x_{0}}\alpha(x)=0\),存在\(\delta_{1}>0\),当\(0 < \vert x - x_{0}\vert < \delta_{1}\)时,\(\vert\alpha(x)\vert < \sqrt{\varepsilon}\);同理,因为\(\lim_{x\to x_{0}}\beta(x)=0\),存在\(\delta_{2}>0\),当\(0 < \vert x - x_{0}\vert < \delta_{2}\)时,\(\vert\beta(x)\vert < \sqrt{\varepsilon}\)。

取\(\delta=\min\{\delta_{1},\delta_{2}\}\),当\(0 < \vert x - x_{0}\vert < \delta\)时,\(\vert\gamma(x)\vert=\vert\alpha(x)\beta(x)\vert=\vert\alpha(x)\vert\vert\beta(x)\vert < \sqrt{\varepsilon}\cdot\sqrt{\varepsilon}=\varepsilon\),所以\(\lim_{x\to x_{0}}\gamma(x)=0\)。例如,当\(x\to0\)时,\(x\)和\(x^{2}\)是无穷小,\(x\cdot x^{2}=x^{3}\)也是无穷小。

3. 无穷小的比较

高阶无穷小:设\(\alpha(x)\)和\(\beta(x)\)是当\(x\to x_{0}\)(或\(x\to\infty\))时的无穷小,如果\(\lim_{x\to x_{0}}\frac{\alpha(x)}{\beta(x)} = 0\),则称\(\alpha(x)\)是\(\beta(x)\)当\(x\to x_{0}\)(或\(x\to\infty\))时的高阶无穷小,记作\(\alpha(x)=o(\beta(x))\)。例如,当\(x\to0\)时,\(x^{2}\)是\(x\)的高阶无穷小,因为\(\lim_{x\to0}\frac{x^{2}}{x}=0\),可记作\(x^{2}=o(x)\)。

低阶无穷小:如果\(\lim_{x\to x_{0}}\frac{\alpha(x)}{\beta(x)}=\infty\),则称\(\alpha(x)\)是\(\beta(x)\)当\(x\to x_{0}\)(或\(x\to\infty\))时的低阶无穷小。

同阶无穷小:如果\(\lim_{x\to x_{0}}\frac{\alpha(x)}{\beta(x)}=C\neq0\),则称\(\alpha(x)\)与\(\beta(x)\)是当\(x\to x_{0}\)(或\(x\to\infty\))时的同阶无穷小。特别地,当\(C = 1\)时,称\(\alpha(x)\)与\(\beta(x)\)是当\(x\to x_{0}\)(或\(x\to\infty\))时的等价无穷小,记作\(\alpha(x)\sim\beta(x)\)。例如,当\(x\to0\)时,\(\sin x\)和\(x\)是等价无穷小,因为\(\lim_{x\to0}\frac{\sin x}{x}=1\),记作\(\sin x\sim x\)。

4. 等价无穷小

设\(\alpha(x)\)和\(\beta(x)\)是当\(x\to x_{0}\)(或\(x\to\infty\))时的无穷小。如果\(\lim_{x\to x_{0}}\frac{\alpha(x)}{\beta(x)} = 1\),则称\(\alpha(x)\)与\(\beta(x)\)是当\(x\to x_{0}\)(或\(x\to\infty\))时的等价无穷小,记作\(\alpha(x)\sim\beta(x)\)。例如,当\(x\to0\)时,\(\sin x\sim x\),这是因为\(\lim_{x\to0}\frac{\sin x}{x}=1\)。

常见的等价无穷小(当\(x\to0\)时)

\(\sin x\sim x\)

\(\tan x\sim x\)

\(\arcsin x\sim x\)

\(\arctan x\sim x\)

\(1 - \cos x\sim\frac{1}{2}x^{2}\)

\(e^{x}-1\sim x\)

\(\ln(1 + x)\sim x\)

\((1 + x)^{a}-1\sim ax\)(\(a\neq0\))

等价无穷小替换定理

设\(\alpha(x)\sim\alpha_{1}(x)\),\(\beta(x)\sim\beta_{1}(x)\),且\(\lim_{x\to x_{0}}\frac{\alpha_{1}(x)}{\beta_{1}(x)}\)存在(或为无穷大),则\(\lim_{x\to x_{0}}\frac{\alpha(x)}{\beta(x)}=\lim_{x\to x_{0}}\frac{\alpha_{1}(x)}{\beta_{1}(x)}\)。

例如,计算\(\lim_{x\to0}\frac{\sin 2x}{x}\)。因为当\(x\to0\)时,\(\sin 2x\sim2x\),所以\(\lim_{x\to0}\frac{\sin 2x}{x}=\lim_{x\to0}\frac{2x}{x}=2\)。

使用等价无穷小的注意事项

乘除运算中可直接替换:等价无穷小一般在乘除运算中可以放心使用。但在加减运算中要谨慎使用,因为直接替换可能会导致错误结果。例如,计算\(\lim_{x\to0}\frac{\tan x - \sin x}{x^{3}}\),如果直接将\(\tan x\)和\(\sin x\)都替换为\(x\),会得到\(\lim_{x\to0}\frac{x - x}{x^{3}}=0\),这是错误的。

正确的做法(加减运算):应该先将式子进行化简。对于\(\lim_{x\to0}\frac{\tan x - \sin x}{x^{3}}\),将\(\tan x=\frac{\sin x}{\cos x}\)代入式子得到\(\lim_{x\to0}\frac{\sin x(1 - \cos x)}{x^{3}\cos x}\)。因为当\(x\to0\)时,\(1 - \cos x\sim\frac{1}{2}x^{2}\),\(\sin x\sim x\),所以原式\(=\lim_{x\to0}\frac{x\cdot\frac{1}{2}x^{2}}{x^{3}\cos x}=\frac{1}{2}\)。

高等数学

考研数学:无穷小 \(\lim_{x\to x_{0}}f(x)=0\)