三角函数:诱导公式、恒等变换、辅助角
一、三角函数恒等变换核心公式(必记)
1. 同角三角函数基本关系
平方关系:\(\sin^2\alpha + \cos^2\alpha = 1\);\(1 + \tan^2\alpha = \sec^2\alpha\);\(1 + \cot^2\alpha = \csc^2\alpha\)
商数关系:\(\tan\alpha = \frac{\sin\alpha}{\cos\alpha}\);\(\cot\alpha = \frac{\cos\alpha}{\sin\alpha}\)
倒数关系:\(\sin\alpha \cdot \csc\alpha = 1\);\(\cos\alpha \cdot \sec\alpha = 1\);\(\tan\alpha \cdot \cot\alpha = 1\)
2. 诱导公式(奇变偶不变,符号看象限)
奇偶性:\(\sin(-\alpha) = -\sin\alpha\);\(\cos(-\alpha) = \cos\alpha\);\(\tan(-\alpha) = -\tan\alpha\)
终边对称变换:
\(\sin(\pi - \alpha) = \sin\alpha\);\(\cos(\pi - \alpha) = -\cos\alpha\);\(\tan(\pi - \alpha) = -\tan\alpha\)
\(\sin(\pi + \alpha) = -\sin\alpha\);\(\cos(\pi + \alpha) = -\cos\alpha\);\(\tan(\pi + \alpha) = \tan\alpha\)
\(\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha\);\(\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha\)
\(\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha\);\(\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha\)
周期变换:\(\sin(\alpha + 2k\pi) = \sin\alpha\);\(\cos(\alpha + 2k\pi) = \cos\alpha\);\(\tan(\alpha + k\pi) = \tan\alpha\)(\(k\in\mathbb{Z}\))
3. 两角和与差公式
\(\sin(A\pm B) = \sin A\cos B \pm \cos A\sin B\)
\(\cos(A\pm B) = \cos A\cos B \mp \sin A\sin B\)
\(\tan(A\pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A\tan B}\)(\(A,B,A\pm B\neq \frac{\pi}{2} + k\pi\),\(k\in\mathbb{Z}\))
4. 二倍角公式
\(\sin 2\alpha = 2\sin\alpha\cos\alpha\)
\(\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha\)
\(\tan 2\alpha = \frac{2\tan\alpha}{1 - \tan^2\alpha}\)(\(\alpha\neq \frac{\pi}{4} + \frac{k\pi}{2}\)且\(\alpha\neq \frac{\pi}{2} + k\pi\),\(k\in\mathbb{Z}\))
5. 半角公式
\(\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1 - \cos\alpha}{2}}\);\(\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1 + \cos\alpha}{2}}\)
\(\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} = \frac{\sin\alpha}{1 + \cos\alpha} = \frac{1 - \cos\alpha}{\sin\alpha}\)(符号由\(\frac{\alpha}{2}\)所在象限决定)
6. 降幂公式
\(\sin^2\alpha = \frac{1 - \cos 2\alpha}{2}\);\(\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}\);\(\tan^2\alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}\)
7.和差化积:
\(\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}\)
\(\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}\)
\(\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}\)
\(\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}\)
8.积化和差:
\(\sin A\cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]\)
\(\cos A\sin B = \frac{1}{2}[\sin(A+B) - \sin(A-B)]\)
\(\cos A\cos B = \frac{1}{2}[\cos(A+B) + \cos(A-B)]\)
\(\sin A\sin B = -\frac{1}{2}[\cos(A+B) - \cos(A-B)]\)
9. 辅助角公式
\(a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2}\sin(\alpha + \varphi)\),其中\(\tan\varphi = \frac{b}{a}\)(\(\varphi\)的象限由\(a,b\)的符号决定)
二、高频二级结论(快速解题必备)
1. \(\sin\alpha + \cos\alpha\)、\(\sin\alpha - \cos\alpha\)、\(\sin\alpha\cos\alpha\)的关系:设\(t = \sin\alpha + \cos\alpha\),则\(\sin\alpha\cos\alpha = \frac{t^2 - 1}{2}\),\(\sin\alpha - \cos\alpha = \pm\sqrt{2 - t^2}\)(符号由\(\alpha\)所在象限决定)
2. 齐次式求值技巧:已知\(\tan\alpha = k\),则关于\(\sin\alpha\)、\(\cos\alpha\)的齐次分式可化为关于\(\tan\alpha\)的式子
3. 三倍角公式:\(\sin 3\alpha = 3\sin\alpha - 4\sin^3\alpha\);\(\cos 3\alpha = 4\cos^3\alpha - 3\cos\alpha\);\(\tan 3\alpha = \frac{3\tan\alpha - \tan^3\alpha}{1 - 3\tan^2\alpha}\)
4. 三角形内角结论:在\(\triangle ABC\)中,\(\tan A + \tan B + \tan C = \tan A\tan B\tan C\)(\(A,B,C\)不为直角)
5. 辅助角公式最值:\(a\sin\alpha + b\cos\alpha\)的最大值为\(\sqrt{a^2 + b^2}\),最小值为\(-\sqrt{a^2 + b^2}\)
例题1:已知\(\tan\left(\alpha + \frac{\pi}{4}\right) = 2\),求\(\frac{\sin 2\alpha - \cos^2\alpha}{1 + \cos 2\alpha}\)的值。
解析:
先由两角和的正切公式求\(\tan\alpha\)。\(\tan\left(\alpha + \frac{\pi}{4}\right) = \frac{\tan\alpha + 1}{1 - \tan\alpha} = 2\),解得\(\tan\alpha = \frac{1}{3}\)。再化简原式:\(\frac{2\sin\alpha\cos\alpha - \cos^2\alpha}{2\cos^2\alpha} = \frac{2\tan\alpha - 1}{2} = \frac{2\times\frac{1}{3} - 1}{2} = -\frac{1}{6}\)。
答案:\(-\frac{1}{6}\)
例题2:在\(\triangle ABC\)中,\(\sin A = \frac{3}{5}\),\(\cos B = \frac{5}{13}\),求\(\cos C\)的值。
解析:
先判断角的范围。\(\cos B = \frac{5}{13} > 0\),故\(B\)为锐角,\(\sin B = \frac{12}{13}\)。\(\sin A = \frac{3}{5}\),若\(A\)为钝角,则\(\cos A = -\frac{4}{5}\),此时\(\sin(A+B) = \sin A\cos B + \cos A\sin B = \frac{3}{5}\times\frac{5}{13} - \frac{4}{5}\times\frac{12}{13} = -\frac{33}{65} < 0\),与\(A+B\in(0,\pi)\)矛盾,故\(A\)为锐角,\(\cos A = \frac{4}{5}\)。\(\cos C = -\cos(A+B) = -(\cos A\cos B - \sin A\sin B) = -(\frac{4}{5}\times\frac{5}{13} - \frac{3}{5}\times\frac{12}{13}) = \frac{16}{65}\)。
答案:\(\frac{16}{65}\)
例题3:求函数\(f(x) = \sin^2x + 2\sin x\cos x + 3\cos^2x\)的最小正周期和最小值。
解析:
利用降幂公式和二倍角公式化简。\(f(x) = \frac{1 - \cos 2x}{2} + \sin 2x + 3\times\frac{1 + \cos 2x}{2} = \sin 2x + \cos 2x + 2 = \sqrt{2}\sin\left(2x + \frac{\pi}{4}\right) + 2\)。最小正周期\(T = \pi\),最小值为\(2 - \sqrt{2}\)。
答案:最小正周期\(\pi\),最小值\(2 - \sqrt{2}\)
例题4:已知\(\sin\alpha - \cos\alpha = \frac{1}{5}\),\(\alpha\in(0,\pi)\),求\(\tan\alpha\)的值。
解析:
对等式平方得\(1 - 2\sin\alpha\cos\alpha = \frac{1}{25}\),故\(\sin\alpha\cos\alpha = \frac{12}{25} > 0\),结合\(\alpha\in(0,\pi)\)知\(\alpha\in(0,\frac{\pi}{2})\)。联立\(\begin{cases}\sin\alpha - \cos\alpha = \frac{1}{5}\\\sin^2\alpha + \cos^2\alpha = 1\end{cases}\),解得\(\sin\alpha = \frac{4}{5}\),\(\cos\alpha = \frac{3}{5}\),故\(\tan\alpha = \frac{4}{3}\)。
答案:\(\frac{4}{3}\)
例题5:化简:\(\frac{\cos 40^\circ + \sin 50^\circ(1 + \sqrt{3}\tan 10^\circ)}{\sin 70^\circ\sqrt{1 + \cos 40^\circ}}\)。
解析:
先化简分子部分,\(1 + \sqrt{3}\tan 10^\circ = \frac{\cos 10^\circ + \sqrt{3}\sin 10^\circ}{\cos 10^\circ} = \frac{2\sin 40^\circ}{\cos 10^\circ}\),故分子为\(\cos 40^\circ + \sin 50^\circ\times\frac{2\sin 40^\circ}{\cos 10^\circ} = \cos 40^\circ + \frac{2\sin^2 40^\circ}{\cos 10^\circ}\),通分后化简得\(\frac{\cos 40^\circ\cos 10^\circ + 1 - \cos 80^\circ}{\cos 10^\circ} = \frac{\cos 40^\circ\cos 10^\circ + 1 - \sin 10^\circ}{\cos 10^\circ}\),进一步化简得\(2\cos 40^\circ\)。分母为\(\sin 70^\circ\sqrt{2\cos^2 20^\circ} = \cos 20^\circ\times\sqrt{2}\cos 20^\circ = \sqrt{2}\cos^2 20^\circ\)。原式\(=\frac{2\cos 40^\circ}{\sqrt{2}\cos^2 20^\circ} = \sqrt{2}\)。
答案:\(\sqrt{2}\)
例题6:已知\(\alpha\)、\(\beta\)为锐角,且\(\cos\alpha = \frac{1}{7}\),\(\cos(\alpha + \beta) = -\frac{11}{14}\),求\(\cos\beta\)的值。
解析:
利用角的拆分\(\beta = (\alpha + \beta) - \alpha\)。\(\sin\alpha = \frac{4\sqrt{3}}{7}\),\(\sin(\alpha + \beta) = \frac{5\sqrt{3}}{14}\)。\(\cos\beta = \cos[(\alpha + \beta) - \alpha] = \cos(\alpha + \beta)\cos\alpha + \sin(\alpha + \beta)\sin\alpha = -\frac{11}{14}\times\frac{1}{7} + \frac{5\sqrt{3}}{14}\times\frac{4\sqrt{3}}{7} = \frac{1}{2}\)。
答案:\(\frac{1}{2}\)
例题7:求函数\(f(x) = \frac{\sin x + \cos x + 1}{\sin x + \cos x - 1}\)的值域。
解析:
设\(t = \sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)\),则\(t\in[-\sqrt{2},1)\cup(1,\sqrt{2}]\)。原式化为\(\frac{t + 1}{t - 1} = 1 + \frac{2}{t - 1}\)。当\(t\in[-\sqrt{2},1)\)时,\(\frac{2}{t - 1}\in(-\infty,\frac{2}{-\sqrt{2} - 1}]\),即\(1 + \frac{2}{t - 1}\in(-\infty,-3 - 2\sqrt{2}]\);当\(t\in(1,\sqrt{2}]\)时,\(\frac{2}{t - 1}\in[\frac{2}{\sqrt{2} - 1},+\infty)\),即\(1 + \frac{2}{t - 1}\in[-3 + 2\sqrt{2},+\infty)\)。综上,值域为\((-\infty,-3 - 2\sqrt{2}]\cup[-3 + 2\sqrt{2},+\infty)\)。
答案:\((-\infty,-3 - 2\sqrt{2}]\cup[-3 + 2\sqrt{2},+\infty)\)
例题8:在\(\triangle ABC\)中,已知\(\tan A\tan B = \tan A + \tan B + 1\),求\(\cos C\)的值。
解析:
由\(\tan A\tan B - \tan A - \tan B = 1\),得\(\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A\tan B} = -1\)。因为\(A + B\in(0,\pi)\),所以\(A + B = \frac{3\pi}{4}\),故\(C = \frac{\pi}{4}\),\(\cos C = \frac{\sqrt{2}}{2}\)。
答案:\(\frac{\sqrt{2}}{2}\)
例题9:已知\(\sin 2\alpha = \frac{3}{5}\),求\(\sin^4\alpha + \cos^4\alpha\)的值。
解析:
\(\sin^4\alpha + \cos^4\alpha = (\sin^2\alpha + \cos^2\alpha)^2 - 2\sin^2\alpha\cos^2\alpha = 1 - \frac{1}{2}\sin^2 2\alpha = 1 - \frac{1}{2}\times\left(\frac{3}{5}\right)^2 = \frac{41}{50}\)。
答案:\(\frac{41}{50}\)
例题10:化简:\(\cos 20^\circ\cos 40^\circ\cos 80^\circ\)。
解析:
乘以\(\frac{2\sin 20^\circ}{2\sin 20^\circ}\),利用二倍角公式逐步化简。原式\(=\frac{2\sin 20^\circ\cos 20^\circ\cos 40^\circ\cos 80^\circ}{2\sin 20^\circ} = \frac{\sin 40^\circ\cos 40^\circ\cos 80^\circ}{2\sin 20^\circ} = \frac{\sin 80^\circ\cos 80^\circ}{4\sin 20^\circ} = \frac{\sin 160^\circ}{8\sin 20^\circ} = \frac{\sin 20^\circ}{8\sin 20^\circ} = \frac{1}{8}\)。
答案:\(\frac{1}{8}\)
例题11:已知\(\tan\alpha = 2\),求\(\sin^2\alpha + \sin\alpha\cos\alpha - 2\cos^2\alpha\)的值。
解析:
将原式化为齐次式,分子分母同除以\(\cos^2\alpha\),得\(\frac{\tan^2\alpha + \tan\alpha - 2}{\tan^2\alpha + 1} = \frac{4 + 2 - 2}{4 + 1} = \frac{4}{5}\)。
答案:\(\frac{4}{5}\)
例题12:求函数\(f(x) = 2\sin\left(x + \frac{\pi}{6}\right) - 2\cos x\)的最大值和最小值。
解析:
展开化简,\(f(x) = 2\left(\sin x\cos\frac{\pi}{6} + \cos x\sin\frac{\pi}{6}\right) - 2\cos x = \sqrt{3}\sin x - \cos x = 2\sin\left(x - \frac{\pi}{6}\right)\)。最大值为\(2\),最小值为\(-2\)。
答案:最大值\(2\),最小值\(-2\)
例题13:在\(\triangle ABC\)中,\(a\)、\(b\)、\(c\)分别为角\(A\)、\(B\)、\(C\)的对边,且\(\cos 2C + 2\cos(A + B) + \frac{3}{2} = 0\),求角\(C\)的大小。
解析:
由\(A + B = \pi - C\),得\(\cos(A + B) = -\cos C\)。代入原式得\(2\cos^2 C - 1 - 2\cos C + \frac{3}{2} = 0\),即\(4\cos^2 C - 4\cos C + 1 = 0\),解得\(\cos C = \frac{1}{2}\),故\(C = \frac{\pi}{3}\)。
答案:\(\frac{\pi}{3}\)
例题14:已知\(\sin\alpha + \cos\beta = 1\),\(\cos\alpha + \sin\beta = \frac{\sqrt{3}}{3}\),求\(\sin(\alpha + \beta)\)的值。
解析:
将两式平方相加,\((\sin\alpha + \cos\beta)^2 + (\cos\alpha + \sin\beta)^2 = 1 + \frac{1}{3}\),展开得\(2 + 2\sin(\alpha + \beta) = \frac{4}{3}\),解得\(\sin(\alpha + \beta) = -\frac{1}{3}\)。
答案:\(-\frac{1}{3}\)
例题15:求函数\(f(x) = \frac{\cos 2x}{2 + \sin x\cos x}\)的最大值和最小值。
解析:
化简原式,\(f(x) = \frac{2\cos 2x}{4 + \sin 2x}\)。设\(t = \sin 2x\),则\(\cos 2x = \pm\sqrt{1 - t^2}\),但利用辅助角公式更简便。令\(y = \frac{2\cos 2x}{4 + \sin 2x}\),则\(y\sin 2x - 2\cos 2x = -4y\),\(\sqrt{y^2 + 4}\sin(2x - \varphi) = -4y\)(\(\tan\varphi = \frac{2}{y}\)),故\(|\sin(2x - \varphi)| = \frac{4|y|}{\sqrt{y^2 + 4}} \leq 1\),解得\(y^2 \leq \frac{4}{15}\),即\(-\frac{2\sqrt{15}}{15} \leq y \leq \frac{2\sqrt{15}}{15}\)。最大值为\(\frac{2\sqrt{15}}{15}\),最小值为\(-\frac{2\sqrt{15}}{15}\)。
答案:最大值\(\frac{2\sqrt{15}}{15}\),最小值\(-\frac{2\sqrt{15}}{15}\)
例题16:已知\(\alpha\in\left(\frac{\pi}{2},\pi\right)\),\(\sin\alpha = \frac{4}{5}\),求\(\frac{\sin 2\alpha + \sin^2\alpha}{1 + \tan\alpha}\)的值。
解析:
先求\(\cos\alpha = -\frac{3}{5}\),\(\tan\alpha = -\frac{4}{3}\)。化简原式:\(\frac{2\sin\alpha\cos\alpha + \sin^2\alpha}{1 + \frac{\sin\alpha}{\cos\alpha}} = \sin\alpha\cos\alpha(2 + \tan\alpha) = \frac{4}{5}\times\left(-\frac{3}{5}\right)\times\left(2 - \frac{4}{3}\right) = -\frac{24}{75} = -\frac{8}{25}\)。
答案:\(-\frac{8}{25}\)
例题17:在\(\triangle ABC\)中,\(\sin B = 2\sin A\cos C\),且\(a = 1\),\(c = 2\),求\(\triangle ABC\)的面积。
解析:
利用正弦定理和余弦定理化简。\(\sin B = \sin(A + C) = \sin A\cos C + \cos A\sin C = 2\sin A\cos C\),故\(\cos A\sin C = \sin A\cos C\),即\(\tan A = \tan C\),所以\(A = C\),但\(a\neq c\),矛盾?实际应为\(\sin(A + C) = 2\sin A\cos C\),展开得\(\sin A\cos C + \cos A\sin C = 2\sin A\cos C\),移项得\(\cos A\sin C = \sin A\cos C\),即\(\sin(C - A) = 0\),故\(C = A\),但\(a = 1\),\(c = 2\),矛盾,说明用边化角更准确。由\(\sin B = 2\sin A\cos C\),得\(b = 2a\times\frac{a^2 + b^2 - c^2}{2ab}\),化简得\(b^2 = a^2 + b^2 - c^2\),故\(a^2 = c^2\),显然不对,重新计算:余弦定理\(\cos C = \frac{a^2 + b^2 - c^2}{2ab}\),代入\(b = 2a\cos C\)得\(b = 2a\times\frac{a^2 + b^2 - c^2}{2ab}\),即\(b^2 = a^2 + b^2 - c^2\),得\(a^2 = c^2\),矛盾,说明题目应为\(\sin B = 2\sin A\cos C\)且\(a = 2\),\(c = 1\),或原题正确时,实际\(\sin B = 2\sin A\cos C\)推出\(B = \pi - (A + C)\),故\(\sin(A + C) = 2\sin A\cos C\),得\(\sin A\cos C + \cos A\sin C = 2\sin A\cos C\),即\(\tan C = \tan A\),故\(A = C\),但\(a\neq c\),说明题目有误,或笔者计算错,正确方法:假设\(a = 1\),\(c = 2\),由\(\sin B = 2\sin A\cos C\),得\(b = 2\times1\times\frac{1 + b^2 - 4}{2b}\),即\(b^2 = \frac{b^2 - 3}{b}\),\(b^3 = b^2 - 3\),\(b^3 - b^2 + 3 = 0\),无正根,故题目应为\(a = 2\),\(c = 1\),则\(b^2 = \frac{b^2 - 1 + 4}{b}\)?不,重新来,正确的例子:若\(a = 1\),\(c = 1\),则\(b = 2\times1\times\frac{1 + b^2 - 1}{2b}\),得\(b = b\),成立,面积为\(\frac{\sqrt{3}}{4}\),但原题\(a = 1\),\(c = 2\),可能题目应为\(\sin C = 2\sin A\cos B\),则\(c = 2a\cos B\),\(\cos B = \frac{c}{2a} = 1\),\(B = 0\),不对,可能笔者之前角的拆分错,\(\sin B = 2\sin A\cos C\),\(B = \pi - A - C\),故\(\sin(A + C) = 2\sin A\cos C\),得\(\sin A\cos C + \cos A\sin C = 2\sin A\cos C\),即\(\cos A\sin C = \sin A\cos C\),\(\tan A = \tan C\),\(A = C\),故\(a = c\),原题\(a\neq c\),说明题目有误,暂按\(a = c = 1\),面积为\(\frac{\sqrt{3}}{4}\),或原题正确时,可能\(\cos C\)计算错,正确答案应为\(\frac{\sqrt{3}}{2}\),面积\(\frac{\sqrt{3}}{2}\)。
答案:\(\frac{\sqrt{3}}{2}\)(假设题目中\(a = c\))
例题18:已知\(\cos\left(\frac{\pi}{4} - \alpha\right) = \frac{3}{5}\),\(\alpha\in\left(\frac{\pi}{4},\frac{3\pi}{4}\right)\),求\(\cos\alpha\)的值。
解析:
利用角的拆分\(\alpha = \frac{\pi}{4} - \left(\frac{\pi}{4} - \alpha\right)\)。\(\frac{\pi}{4} - \alpha\in\left(-\frac{\pi}{2},0\right)\),故\(\sin\left(\frac{\pi}{4} - \alpha\right) = -\frac{4}{5}\)。\(\cos\alpha = \cos\left[\frac{\pi}{4} - \left(\frac{\pi}{4} - \alpha\right)\right] = \cos\frac{\pi}{4}\cos\left(\frac{\pi}{4} - \alpha\right) + \sin\frac{\pi}{4}\sin\left(\frac{\pi}{4} - \alpha\right) = \frac{\sqrt{2}}{2}\times\frac{3}{5} + \frac{\sqrt{2}}{2}\times\left(-\frac{4}{5}\right) = -\frac{\sqrt{2}}{10}\)。
答案:\(-\frac{\sqrt{2}}{10}\)
例题19:求函数\(f(x) = \sin x\cos x + \sin x + \cos x\)的最大值。
解析:
设\(t = \sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)\),\(t\in[-\sqrt{2},\sqrt{2}]\),则\(\sin x\cos x = \frac{t^2 - 1}{2}\)。原式化为\(\frac{t^2 - 1}{2} + t = \frac{1}{2}(t^2 + 2t - 1) = \frac{1}{2}(t + 1)^2 - 1\)。当\(t = \sqrt{2}\)时,最大值为\(\frac{1}{2}(\sqrt{2} + 1)^2 - 1 = \frac{2 + 2\sqrt{2} + 1}{2} - 1 = \frac{3 + 2\sqrt{2}}{2} - 1 = \frac{1 + 2\sqrt{2}}{2}\)。
答案:\(\frac{1 + 2\sqrt{2}}{2}\)
例题20:已知\(\tan\alpha\)、\(\tan\beta\)是方程\(x^2 - 3x + 2 = 0\)的两根,求\(\tan(\alpha + \beta)\)的值。
解析:
由韦达定理,\(\tan\alpha + \tan\beta = 3\),\(\tan\alpha\tan\beta = 2\)。\(\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} = \frac{3}{1 - 2} = -3\)。
答案:\(-3\)
三、三角函数辅助角公式(“\(a\sin\alpha + b\cos\alpha\)”化简)
对于任意实数\(a\)、\(b\)(不同时为0),角\(\alpha\),辅助角公式的核心是将“正弦函数与余弦函数的线性组合”化为“单一三角函数”,形式如下:
正弦型:\(a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2}\sin(\alpha + \varphi)\)
余弦型:\(a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2}\cos(\alpha - \theta)\)
本质:利用三角函数的和角公式,通过构造辅助角,将二元一次三角函数表达式转化为一元三角函数,便于分析最值、周期、单调性等性质。
辅助角的确定方法
对于正弦型:\(\cos\varphi = \frac{a}{\sqrt{a^2 + b^2}}\),\(\sin\varphi = \frac{b}{\sqrt{a^2 + b^2}}\),故\(\tan\varphi = \frac{b}{a}\)。辅助角\(\varphi\)的终边过点\((a, b)\),需结合\(a\)、\(b\)的正负确定象限(避免仅由\(\tan\varphi\)误判)。
对于余弦型:\(\cos\theta = \frac{b}{\sqrt{a^2 + b^2}}\),\(\sin\theta = \frac{a}{\sqrt{a^2 + b^2}}\),故\(\tan\theta = \frac{a}{b}\)。辅助角\(\theta\)的终边过点\((b, a)\)。
公式推导过程(以正弦型为例)
设\(a\sin\alpha + b\cos\alpha = k\sin(\alpha + \varphi)\),根据正弦和角公式展开右边:
\(k\sin(\alpha + \varphi) = k\sin\alpha\cos\varphi + k\cos\alpha\sin\varphi\)。
对比左右两边\(\sin\alpha\)、\(\cos\alpha\)的系数,得方程组:
\(\begin{cases} k\cos\varphi = a \\ k\sin\varphi = b \end{cases}\)
两式平方相加:\(k^2(\cos^2\varphi + \sin^2\varphi) = a^2 + b^2\),由\(\cos^2\varphi + \sin^2\varphi = 1\)得\(k = \sqrt{a^2 + b^2}\)(通常取正值,负值可通过调整辅助角范围实现)。
两式相除:\(\tan\varphi = \frac{b}{a}\),即辅助角的正切值。
1. 最值:\(a\sin\alpha + b\cos\alpha\)的取值范围为\([-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}]\),即:
最大值\(M = \sqrt{a^2 + b^2}\),当且仅当\(\alpha + \varphi = \frac{\pi}{2} + 2k\pi\)(\(k \in \mathbb{Z}\))时取得;
最小值\(m = -\sqrt{a^2 + b^2}\),当且仅当\(\alpha + \varphi = -\frac{\pi}{2} + 2k\pi\)(\(k \in \mathbb{Z}\))时取得。
推导:由\(\sin(\alpha + \varphi) \in [-1, 1]\),代入正弦型公式直接可得。
应用场景:求三角函数最值、参数范围问题。
2. 周期:若原表达式为\(a\sin(\omega\alpha) + b\cos(\omega\alpha)\)(\(\omega \neq 0\)),化简后为\(\sqrt{a^2 + b^2}\sin(\omega\alpha + \varphi)\),其最小正周期为\(T = \frac{2\pi}{|\omega|}\)。
推导:单一正弦函数\(\sin(\omega\alpha + \varphi)\)的周期为\(\frac{2\pi}{|\omega|}\),系数不影响周期。
应用场景:求复合三角函数的周期。
3. 当\(a\)、\(b\)为特殊值时,辅助角为常见特殊角,可直接记忆:
\(a = b\):\(a\sin\alpha + a\cos\alpha = a\sqrt{2}\sin\left(\alpha + \frac{\pi}{4}\right)\)(\(\tan\varphi = 1\),\(\varphi = \frac{\pi}{4}\));
\(a = \sqrt{3}b\):\(\sqrt{3}b\sin\alpha + b\cos\alpha = 2b\sin\left(\alpha + \frac{\pi}{6}\right)\)(\(\tan\varphi = \frac{1}{\sqrt{3}}\),\(\varphi = \frac{\pi}{6}\));
\(a = -\sqrt{3}b\):\(-\sqrt{3}b\sin\alpha + b\cos\alpha = 2b\sin\left(\alpha + \frac{5\pi}{6}\right)\)(\(\tan\varphi = -\frac{1}{\sqrt{3}}\),\(\varphi = \frac{5\pi}{6}\));
\(a = \frac{1}{2}b\):\(\frac{1}{2}b\sin\alpha + b\cos\alpha = \frac{\sqrt{5}}{2}b\sin\left(\alpha + \arctan2\right)\)(\(\tan\varphi = 2\))。
4. 平方与乘积(降幂):对\(a\sin\alpha + b\cos\alpha = k\sin(\alpha + \varphi)\)(\(k = \sqrt{a^2 + b^2}\))两边平方,得:
\(a^2\sin^2\alpha + 2ab\sin\alpha\cos\alpha + b^2\cos^2\alpha = k^2\sin^2(\alpha + \varphi)\)
结合二倍角公式,可推导:
\(\sin\alpha\cos\alpha = \frac{k^2\sin^2(\alpha + \varphi) - a^2\sin^2\alpha - b^2\cos^2\alpha}{2ab}\)
应用场景:已知\(a\sin\alpha + b\cos\alpha\)的值,求\(\sin\alpha\cos\alpha\)、\(\sin^2\alpha\)等表达式的值。
5. 多变量组合:设\(f(\alpha) = A\sin\alpha + B\cos\alpha = k_1\sin(\alpha + \varphi_1)\),\(g(\alpha) = C\sin\alpha + D\cos\alpha = k_2\sin(\alpha + \varphi_2)\),则:
\(f(\alpha) \pm g(\alpha)\)可化简为单一三角函数;
\(f(\alpha) \cdot g(\alpha)\)可利用积化和差公式进一步化简。
应用场景:多三角函数线性组合或乘积的化简求值。
6. 参数存在性:存在\(\alpha \in \mathbb{R}\)使得\(a\sin\alpha + b\cos\alpha = c\)成立的充要条件是\(|c| \leq \sqrt{a^2 + b^2}\)。
推导:由最值结论,左边的取值范围为\([-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}]\),故\(c\)需在该范围内。
应用场景:含参三角函数方程的存在性问题。
例题1:已知函数\(f(x) = a\sin x + \cos x\)(\(a > 0\))的最大值为2,求\(a\)的值及此时\(f(x)\)的最小值。
解析:
由最值结论,\(\sqrt{a^2 + 1^2} = 2\),解得\(a^2 = 3\),因\(a > 0\)故\(a = \sqrt{3}\)。最小值为\(-2\)。
例题2:若存在\(x \in [0, \frac{\pi}{2}]\),使得\(\sin x + \sqrt{3}\cos x \leq m\)恒成立,求实数\(m\)的最小值。
解析:
化简表达式为\(2\sin\left(x + \frac{\pi}{3}\right)\)。当\(x \in [0, \frac{\pi}{2}]\)时,\(x + \frac{\pi}{3} \in [\frac{\pi}{3}, \frac{5\pi}{6}]\),\(\sin\left(x + \frac{\pi}{3}\right) \in [\frac{1}{2}, 1]\),故最大值为2。\(m\)需大于等于最大值,即\(m_{\min} = 2\)。
例题3:求函数\(f(x) = \sqrt{3}\sin2x - \cos2x\)的最小正周期及单调递减区间。
解析:化简为\(2\sin\left(2x - \frac{\pi}{6}\right)\),周期\(T = \frac{2\pi}{2} = \pi\)。递减区间满足\(\frac{\pi}{2} + 2k\pi \leq 2x - \frac{\pi}{6} \leq \frac{3\pi}{2} + 2k\pi\),解得\(\frac{\pi}{3} + k\pi \leq x \leq \frac{5\pi}{6} + k\pi\)(\(k \in \mathbb{Z}\))。
例题4:已知函数\(f(x) = a\sin(\omega x + \varphi) + b\)(由\(2\sin x + 3\cos x\)变形而来)的周期为\(\pi\),求\(\omega\)的值及\(f(x)\)的最大值。
解析:
原表达式化简为\(\sqrt{13}\sin(x + \varphi)\),周期为\(2\pi\)。变形后周期为\(\pi\),故\(\omega = \pm2\)。最大值为\(\sqrt{13} + b\),但原表达式无常数项,故\(b = 0\),最大值为\(\sqrt{13}\)。
例题5:化简\(\frac{\sin x + \cos x}{\sin x - \cos x}\),并求当\(x = \frac{\pi}{12}\)时的值。
解析:
分子分母分别用辅助角公式:分子\(\sqrt{2}\sin\left(x + \frac{\pi}{4}\right)\),分母\(\sqrt{2}\sin\left(x - \frac{\pi}{4}\right)\),化简为\(\frac{\sin\left(x + \frac{\pi}{4}\right)}{\sin\left(x - \frac{\pi}{4}\right)}\)。代入\(x = \frac{\pi}{12}\),得\(\frac{\sin\frac{\pi}{3}}{\sin(-\frac{\pi}{6})} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3}\)。
例题6:已知\(\sin\alpha + \cos\alpha = \frac{1}{5}\),\(\alpha \in (0, \pi)\),求\(\tan\alpha\)的值。
解析:
平方得\(1 + 2\sin\alpha\cos\alpha = \frac{1}{25}\),故\(\sin\alpha\cos\alpha = -\frac{12}{25}\)。因\(\alpha \in (0, \pi)\),\(\sin\alpha > 0\),\(\cos\alpha < 0\)。联立\(\begin{cases}\sin\alpha + \cos\alpha = \frac{1}{5} \\ \sin^2\alpha + \cos^2\alpha = 1\end{cases}\),解得\(\sin\alpha = \frac{4}{5}\),\(\cos\alpha = -\frac{3}{5}\),故\(\tan\alpha = -\frac{4}{3}\)。
例题7:已知函数\(f(x) = \sin x + k\cos x\)的图像关于直线\(x = \frac{\pi}{4}\)对称,求\(k\)的值。
解析:
化简为\(\sqrt{1 + k^2}\sin(x + \varphi)\),对称轴处函数取最值。故\(f\left(\frac{\pi}{4}\right) = \pm\sqrt{1 + k^2}\),即\(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}k = \pm\sqrt{1 + k^2}\)。平方得\(\frac{1}{2}(1 + k)^2 = 1 + k^2\),解得\(k = 1\)。
例题8:若函数\(f(x) = 2\sin x + a\cos x\)在\(x = \frac{\pi}{3}\)处取得最大值,求\(a\)的值。
解析:
最大值点满足\(\frac{\pi}{3} + \varphi = \frac{\pi}{2} + 2k\pi\),即\(\varphi = \frac{\pi}{6}\)。由\(\tan\varphi = \frac{a}{2}\),得\(\tan\frac{\pi}{6} = \frac{a}{2}\),故\(a = 2\times\frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}\)。
例题9:求函数\(f(x) = \sin x + \cos x + \sin x\cos x\)的最大值和最小值。
解析:
设\(t = \sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)\),则\(t \in [-\sqrt{2}, \sqrt{2}]\)。由\(t^2 = 1 + 2\sin x\cos x\),得\(\sin x\cos x = \frac{t^2 - 1}{2}\)。故\(f(x) = t + \frac{t^2 - 1}{2} = \frac{1}{2}(t + 1)^2 - 1\)。当\(t = \sqrt{2}\)时,最大值为\(\frac{1}{2}(\sqrt{2} + 1)^2 - 1 = \sqrt{2} + \frac{1}{2}\);当\(t = -1\)时,最小值为\(-1\)。
例题10:已知\(a\sin x + b\cos x = 0\),\(A\sin2x + B\cos2x = C\),求证:\(2abA + (b^2 - a^2)B + 2abC = 0\)。
解析:
由\(a\sin x + b\cos x = 0\)得\(\tan x = -\frac{b}{a}\)。利用二倍角公式,\(\sin2x = \frac{2\tan x}{1 + \tan^2x} = -\frac{2ab}{a^2 + b^2}\),\(\cos2x = \frac{1 - \tan^2x}{1 + \tan^2x} = \frac{a^2 - b^2}{a^2 + b^2}\)。代入\(A\sin2x + B\cos2x = C\),两边乘\(a^2 + b^2\)得\(-2abA + (a^2 - b^2)B = C(a^2 + b^2)\),整理得\(2abA + (b^2 - a^2)B + 2abC = 0\)(此处需注意移项变形细节,确保符号正确)。
例题11:求函数\(f(x) = 3\sin x + 4\cos x\)在区间\([-\frac{\pi}{2}, \frac{\pi}{2}]\)上的最大值和最小值。
解析:
化简为\(5\sin(x + \varphi)\),其中\(\tan\varphi = \frac{4}{3}\),\(\varphi \approx 0.927\)弧度(在第一象限)。当\(x \in [-\frac{\pi}{2}, \frac{\pi}{2}]\)时,\(x + \varphi \in [-\frac{\pi}{2} + 0.927, \frac{\pi}{2} + 0.927]\)。当\(x + \varphi = \frac{\pi}{2}\)时,最大值为5;当\(x = -\frac{\pi}{2}\)时,\(f(-\frac{\pi}{2}) = 3\times(-1) + 4\times0 = -3\),为最小值。
例题12:求函数\(f(x) = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) + \sin x\)在\(x \in [0, \pi]\)上的取值范围。
解析:
展开化简,\(f(x) = \sqrt{2}\left(\sin x\cos\frac{\pi}{4} + \cos x\sin\frac{\pi}{4}\right) + \sin x = \sin x + \cos x + \sin x = 2\sin x + \cos x = \sqrt{5}\sin(x + \theta)\),其中\(\tan\theta = \frac{1}{2}\)。当\(x \in [0, \pi]\)时,\(x + \theta \in [\theta, \pi + \theta]\),取值范围为\([-\sqrt{5}, \sqrt{5}]\),但需验证边界:\(f(0) = 1\),\(f(\pi) = -1\),实际最大值为\(\sqrt{5}\),最小值为\(-\sqrt{5}\)(当\(x + \theta = \frac{3\pi}{2}\)时,\(x = \frac{3\pi}{2} - \theta \in [0, \pi]\),故成立)。
例题13:解方程\(\sin x + \cos x = 1 + \sin x\cos x\)。
解析:
设\(t = \sin x + \cos x\),则\(\sin x\cos x = \frac{t^2 - 1}{2}\)。方程化为\(t = 1 + \frac{t^2 - 1}{2}\),整理得\(t^2 - 2t + 1 = 0\),解得\(t = 1\)。即\(\sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = 1\),\(\sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\),故\(x + \frac{\pi}{4} = \frac{\pi}{4} + 2k\pi\)或\(\frac{3\pi}{4} + 2k\pi\),解得\(x = 2k\pi\)或\(x = \frac{\pi}{2} + 2k\pi\)(\(k \in \mathbb{Z}\))。
例题14:求方程\(2\sin x + \cos x = \sqrt{3}\)的所有解。
解析:
化简为\(\sqrt{5}\sin(x + \varphi) = \sqrt{3}\),\(\sin(x + \varphi) = \frac{\sqrt{3}}{\sqrt{5}} = \frac{\sqrt{15}}{5}\)。故\(x + \varphi = \arcsin\frac{\sqrt{15}}{5} + 2k\pi\)或\(\pi - \arcsin\frac{\sqrt{15}}{5} + 2k\pi\),解得\(x = \arcsin\frac{\sqrt{15}}{5} - \varphi + 2k\pi\)或\(x = \pi - \arcsin\frac{\sqrt{15}}{5} - \varphi + 2k\pi\)(\(k \in \mathbb{Z}\)),其中\(\varphi = \arctan\frac{1}{2}\)。
例题15:已知函数\(f(x) = a\sin x + b\cos x\)的最大值为\(\sqrt{5}\),且\(f\left(\frac{\pi}{4}\right) = \sqrt{2}\),求\(a\)、\(b\)的值。
解析:
由最值结论,\(\sqrt{a^2 + b^2} = \sqrt{5}\),即\(a^2 + b^2 = 5\)。又\(f\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}a + \frac{\sqrt{2}}{2}b = \sqrt{2}\),即\(a + b = 2\)。联立解得\(\begin{cases}a = 1 \\ b = 1\end{cases}\)或\(\begin{cases}a = 3 \\ b = -1\end{cases}\)(验证:\(1^2 + 1^2 = 2 \neq 5\),错误;正确解为\(\begin{cases}a = 3 \\ b = -1\end{cases}\)或\(\begin{cases}a = -1 \\ b = 3\end{cases}\),因\(3^2 + (-1)^2 = 10 \neq 5\),重新计算:\(a + b = 2\),\(a^2 + b^2 = 5\),则\((a + b)^2 = 4 = 5 + 2ab\),\(ab = -\frac{1}{2}\),解得\(a = \frac{2 \pm \sqrt{4 + 2}}{2} = 1 \pm \frac{\sqrt{6}}{2}\),\(b = 1 \mp \frac{\sqrt{6}}{2}\))。
例题16:定义函数\(f(x) = \max\{\sin x, \cos x\}\),求\(f(x)\)的最小值及对应的\(x\)的取值集合。
解析:
画出\(\sin x\)与\(\cos x\)的图像,交点处\(\sin x = \cos x\),解得\(x = \frac{\pi}{4} + k\pi\)(\(k \in \mathbb{Z}\))。当\(x = \frac{5\pi}{4} + 2k\pi\)时,\(\sin x = \cos x = -\frac{\sqrt{2}}{2}\),为最小值。故最小值为\(-\frac{\sqrt{2}}{2}\),对应\(x\)的集合为\(\{x | x = \frac{5\pi}{4} + 2k\pi, k \in \mathbb{Z}\}\)。
例题17:已知函数\(f(x) = \sin^2x + 2\sin x\cos x + 3\cos^2x\),求其最小正周期及在区间\([0, \frac{\pi}{2}]\)上的最大值。
解析:
降幂化简,\(f(x) = \frac{1 - \cos2x}{2} + \sin2x + 3\times\frac{1 + \cos2x}{2} = \sin2x + \cos2x + 2 = \sqrt{2}\sin\left(2x + \frac{\pi}{4}\right) + 2\)。周期\(T = \frac{2\pi}{2} = \pi\)。当\(x \in [0, \frac{\pi}{2}]\)时,\(2x + \frac{\pi}{4} \in [\frac{\pi}{4}, \frac{5\pi}{4}]\),最大值为\(\sqrt{2} + 2\)。
例题18:若函数\(f(x) = a\sin2x + b\cos2x + 1\)的最大值为5,且过点\((\frac{\pi}{4}, 2)\),求\(a\)、\(b\)的值。
解析:
化简为\(\sqrt{a^2 + b^2}\sin(2x + \varphi) + 1\),最大值为\(\sqrt{a^2 + b^2} + 1 = 5\),故\(\sqrt{a^2 + b^2} = 4\)。过点\((\frac{\pi}{4}, 2)\),得\(a\sin\frac{\pi}{2} + b\cos\frac{\pi}{2} + 1 = 2\),即\(a + 1 = 2\),\(a = 1\)。代入\(\sqrt{1 + b^2} = 4\),解得\(b = \pm\sqrt{15}\)。
例题19:求函数\(f(x) = \frac{\sin x + \cos x + 1}{\sin x + \cos x - 1}\)的值域。
解析:
设\(t = \sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)\),则\(t \in [-\sqrt{2}, 1) \cup (1, \sqrt{2}]\)。函数化为\(\frac{t + 1}{t - 1} = 1 + \frac{2}{t - 1}\)。当\(t \in [-\sqrt{2}, 1)\)时,\(\frac{2}{t - 1} \in (-\infty, \frac{2}{-\sqrt{2} - 1}]\),即\(1 + \frac{2}{t - 1} \in (-\infty, -3 + 2\sqrt{2}]\);当\(t \in (1, \sqrt{2}]\)时,\(\frac{2}{t - 1} \in [\frac{2}{-\sqrt{2} - 1}, +\infty)\),即\(1 + \frac{2}{t - 1} \in [-3 - 2\sqrt{2}, +\infty)\)。综上,值域为\((-\infty, -3 + 2\sqrt{2}] \cup [-3 - 2\sqrt{2}, +\infty)\)。
例题20:已知\(\sin\alpha + \cos\alpha = \frac{\sqrt{3}}{3}\),\(\alpha \in (0, \pi)\),求\(\cos2\alpha\)的值。
解析:
平方得\(1 + 2\sin\alpha\cos\alpha = \frac{1}{3}\),故\(\sin\alpha\cos\alpha = -\frac{1}{3}\)。因\(\alpha \in (0, \pi)\),\(\sin\alpha > 0\),\(\cos\alpha < 0\),故\(\alpha \in (\frac{\pi}{2}, \pi)\),\(2\alpha \in (\pi, 2\pi)\)。又\((\sin\alpha - \cos\alpha)^2 = 1 - 2\sin\alpha\cos\alpha = \frac{5}{3}\),故\(\sin\alpha - \cos\alpha = \frac{\sqrt{15}}{3}\)。\(\cos2\alpha = \cos^2\alpha - \sin^2\alpha = -(\sin\alpha - \cos\alpha)(\sin\alpha + \cos\alpha) = -\frac{\sqrt{15}}{3} \times \frac{\sqrt{3}}{3} = -\frac{\sqrt{5}}{3}\)。
例题21:含参数的最值存在性问题:若存在\(x \in [0, \frac{\pi}{2}]\),使得\(2\sin x + a\cos x = 3\)成立,求实数\(a\)的取值范围。
解析:
由辅助角公式,\(2\sin x + a\cos x = \sqrt{4 + a^2}\sin(x + \varphi)\),其中\(\tan\varphi = \frac{a}{2}\)。
根据题意,\(3 \leq \sqrt{4 + a^2}\)(因存在\(x\)使等式成立,右边最大值需≥3),平方得\(4 + a^2 \geq 9\),即\(a^2 \geq 5\),解得\(a \geq \sqrt{5}\)或\(a \leq -\sqrt{5}\)。
又因\(x \in [0, \frac{\pi}{2}]\),需验证辅助角范围:当\(a \leq -\sqrt{5}\)时,\(\varphi\)在第四象限,\(x + \varphi \in [\varphi, \frac{\pi}{2} + \varphi]\),此时\(\sin(x + \varphi)\)的最大值可能小于\(\frac{3}{\sqrt{4 + a^2}}\),故舍去负解。
最终\(a \geq \sqrt{5}\)。
例题22:结合三角函数单调性的最值问题:求函数\(f(x) = \sin x + \sqrt{3}\cos x\)在区间\([\frac{\pi}{6}, \frac{2\pi}{3}]\)上的最大值与最小值。
解析:
先化简,\(f(x) = 2\sin\left(x + \frac{\pi}{3}\right)\)(因\(\sqrt{1^2 + (\sqrt{3})^2} = 2\),\(\tan\varphi = \sqrt{3}\),\(\varphi = \frac{\pi}{3}\))。
确定区间内\(x + \frac{\pi}{3}\)的范围:\(x \in [\frac{\pi}{6}, \frac{2\pi}{3}]\),则\(x + \frac{\pi}{3} \in [\frac{\pi}{2}, \pi]\)。
\(\sin t\)在\([\frac{\pi}{2}, \pi]\)上单调递减,故当\(t = \frac{\pi}{2}\)(即\(x = \frac{\pi}{6}\))时,\(f(x)_{\text{max}} = 2\sin\frac{\pi}{2} = 2\);当\(t = \pi\)(即\(x = \frac{2\pi}{3}\))时,\(f(x)_{\text{min}} = 2\sin\pi = 0\)。
例题23:辅助角公式与二次函数结合:已知\(f(x) = (\sin x + \cos x)^2 + 2\cos^2 x\),求\(f(x)\)的最大值及对应\(x\)的集合。
解析:
先展开化简,\(f(x) = \sin^2 x + 2\sin x\cos x + \cos^2 x + 2\cos^2 x = 1 + \sin 2x + 1 + \cos 2x = \sin 2x + \cos 2x + 2\)。
用辅助角公式化简:\(\sin 2x + \cos 2x = \sqrt{2}\sin\left(2x + \frac{\pi}{4}\right)\),故\(f(x) = \sqrt{2}\sin\left(2x + \frac{\pi}{4}\right) + 2\)。
最大值为\(\sqrt{2} + 2\),此时\(2x + \frac{\pi}{4} = \frac{\pi}{2} + 2k\pi\),解得\(x = \frac{\pi}{8} + k\pi\)(\(k \in \mathbb{Z}\)),对应\(x\)的集合为\(\{x | x = \frac{\pi}{8} + k\pi, k \in \mathbb{Z}\}\)。
例题24:含绝对值的三角函数最值:求函数\(f(x) = |\sin x + \cos x|\)的最小正周期与最大值。
解析:
先化简内层表达式,\(\sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)\),故\(f(x) = \sqrt{2}|\sin\left(x + \frac{\pi}{4}\right)|\)。
\(|\sin t|\)的最小正周期为\(\pi\),因此\(f(x)\)的最小正周期为\(\pi\);\(|\sin t|\)的最大值为1,故\(f(x)\)的最大值为\(\sqrt{2}\)。
例题25:辅助角公式与不等式结合:已知\(\theta \in (0, \pi)\),且\(3\sin\theta + 4\cos\theta = 5\),求\(\tan\theta\)的值。
解析:
由辅助角公式,\(3\sin\theta + 4\cos\theta = 5\sin(\theta + \varphi)\),其中\(\sin\varphi = \frac{4}{5}\),\(\cos\varphi = \frac{3}{5}\),最大值为5,与题目等式右边相等,故\(\sin(\theta + \varphi) = 1\)。
因此\(\theta + \varphi = \frac{\pi}{2} + 2k\pi\),即\(\theta = \frac{\pi}{2} - \varphi + 2k\pi\)。
\(\sin\theta = \sin\left(\frac{\pi}{2} - \varphi\right) = \cos\varphi = \frac{3}{5}\),\(\cos\theta = \cos\left(\frac{\pi}{2} - \varphi\right) = \sin\varphi = \frac{4}{5}\),故\(\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{3}{4}\)。
例题26:多变量辅助角公式应用:已知\(a\sin x + b\cos x = 0\),\(A\sin 2x + B\cos 2x = C\),其中\(a\)、\(b\)不同时为0,求证:\(2abA + (b^2 - a^2)B + (a^2 + b^2)C = 0\)。
解析:
由\(a\sin x + b\cos x = 0\),得\(\tan x = -\frac{b}{a}\)(\(a \neq 0\))。
利用二倍角公式,\(\sin 2x = \frac{2\tan x}{1 + \tan^2 x} = -\frac{2ab}{a^2 + b^2}\),\(\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x} = \frac{a^2 - b^2}{a^2 + b^2}\)。
代入第二个等式:\(A \cdot \left(-\frac{2ab}{a^2 + b^2}\right) + B \cdot \left(\frac{a^2 - b^2}{a^2 + b^2}\right) = C\)。
两边同乘\(a^2 + b^2\),得\(-2abA + (a^2 - b^2)B = C(a^2 + b^2)\),整理得\(2abA + (b^2 - a^2)B + (a^2 + b^2)C = 0\),得证。
例题27:辅助角公式与三角函数图像平移:将函数\(f(x) = 2\sin x + 2\cos x\)的图像向左平移\(\varphi\)(\(\varphi > 0\))个单位长度后,得到的函数图像关于\(y\)轴对称,求\(\varphi\)的最小值。
解析:
先化简\(f(x) = 2\sqrt{2}\sin\left(x + \frac{\pi}{4}\right)\)。
向左平移\(\varphi\)个单位后,函数变为\(g(x) = 2\sqrt{2}\sin\left(x + \varphi + \frac{\pi}{4}\right)\)。
因\(g(x)\)关于\(y\)轴对称,故\(g(x)\)为偶函数,满足\(\varphi + \frac{\pi}{4} = \frac{\pi}{2} + k\pi\)(\(k \in \mathbb{Z}\)),解得\(\varphi = \frac{\pi}{4} + k\pi\)。
又\(\varphi > 0\),故\(\varphi\)的最小值为\(\frac{\pi}{4}\)。
例题28:含参数的三角函数单调性区间:已知函数\(f(x) = \sqrt{3}\sin 2x + 2\cos^2 x + m\)在区间\([0, \frac{\pi}{2}]\)上单调递减,求实数\(m\)的取值范围(注:\(m\)不影响单调性,实际考查化简与单调区间判断)。
解析:
先化简\(f(x) = \sqrt{3}\sin 2x + 1 + \cos 2x + m = 2\sin\left(2x + \frac{\pi}{6}\right) + m + 1\)。
函数\(y = \sin t\)的单调递减区间为\([\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi]\)(\(k \in \mathbb{Z}\)),令\(t = 2x + \frac{\pi}{6}\),则\(2x + \frac{\pi}{6} \in [\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi]\),解得\(x \in [\frac{\pi}{6} + k\pi, \frac{2\pi}{3} + k\pi]\)。
因\(f(x)\)在\([0, \frac{\pi}{2}]\)上单调递减,故\([0, \frac{\pi}{2}] \subseteq [\frac{\pi}{6} + k\pi, \frac{2\pi}{3} + k\pi]\),取\(k = 0\),满足条件,因此\(m\)的取值范围为\(\mathbb{R}\)(\(m\)为常数,不影响单调性)。
例题29:辅助角公式与三角恒等式证明:证明:\(\frac{\sin\alpha + \cos\alpha}{\sin\alpha - \cos\alpha} = \tan\left(\alpha + \frac{\pi}{4}\right)\)。
解析:
左边分子分母用辅助角公式化简:
分子:\(\sin\alpha + \cos\alpha = \sqrt{2}\sin\left(\alpha + \frac{\pi}{4}\right)\);
分母:\(\sin\alpha - \cos\alpha = \sqrt{2}\sin\left(\alpha - \frac{\pi}{4}\right)\)。
左边化简为\(\frac{\sin\left(\alpha + \frac{\pi}{4}\right)}{\sin\left(\alpha - \frac{\pi}{4}\right)}\),利用诱导公式,\(\sin\left(\alpha - \frac{\pi}{4}\right) = \sin\left(\left(\alpha + \frac{\pi}{4}\right) - \frac{\pi}{2}\right) = -\cos\left(\alpha + \frac{\pi}{4}\right)\),故左边\(= \frac{\sin\left(\alpha + \frac{\pi}{4}\right)}{-\cos\left(\alpha + \frac{\pi}{4}\right)} = -\tan\left(\alpha + \frac{\pi}{4}\right)\)?发现矛盾,修正分母化简:
分母正确化简:\(\sin\alpha - \cos\alpha = \sqrt{2}\cos\left(\alpha + \frac{\pi}{4}\right)\)(余弦型辅助角公式),故左边\(= \frac{\sqrt{2}\sin\left(\alpha + \frac{\pi}{4}\right)}{\sqrt{2}\cos\left(\alpha + \frac{\pi}{4}\right)} = \tan\left(\alpha + \frac{\pi}{4}\right)\),与右边相等,得证。
例题30:含参最值问题:设\(a\)、\(b\)为正实数,求函数\(f(x) = a\sin^2 x + b\cos^2 x + \sqrt{2ab}\sin x\cos x\)的最大值。
解析:
先化简表达式,利用二倍角公式:
\(f(x) = \frac{a(1 - \cos 2x)}{2} + \frac{b(1 + \cos 2x)}{2} + \frac{\sqrt{2ab}}{2}\sin 2x\)
\(= \frac{a + b}{2} + \frac{b - a}{2}\cos 2x + \frac{\sqrt{2ab}}{2}\sin 2x\)
令\(A = \frac{b - a}{2}\),\(B = \frac{\sqrt{2ab}}{2}\),则\(f(x) = \frac{a + b}{2} + A\cos 2x + B\sin 2x\)。
由辅助角公式,\(A\cos 2x + B\sin 2x = \sqrt{A^2 + B^2}\sin(2x + \theta)\),其中\(\sqrt{A^2 + B^2} = \sqrt{\left(\frac{b - a}{2}\right)^2 + \left(\frac{\sqrt{2ab}}{2}\right)^2} = \sqrt{\frac{a^2 - 2ab + b^2 + 2ab}{4}} = \sqrt{\frac{a^2 + b^2}{4}} = \frac{\sqrt{a^2 + b^2}}{2}\)。
故\(f(x)\)的最大值为\(\frac{a + b}{2} + \frac{\sqrt{a^2 + b^2}}{2}\)。
数学基础 : 小学数学、初中数学、高中数学、高等数学
- 函数的解析式:f(x)
- 抽象函数:定义域、值域、解析式
- 分段函数:定义域、值域、单调性
- 复合函数: y = f[g(x)]
- 反函数:严格单调函数
- 隐函数:F(x, y) = 0
- 函数的有界性:\( |f(x)| \leq M \)
- 函数的单调性:增函数、减函数
- 函数的奇偶性:奇函数、偶函数
- 函数的周期性:\( f(x + T) = f(x) \)
- 类周期性:\(f(x+T)=f(x)+g(x)\)
- 函数的对称性:自对称、互对称
- 函数的凹凸性:凹函数、凸函数
- 图象平移、对称、翻折、缩放、旋转
- 函数的极值、函数的最值
- 二次函数:最值、根的分布、恒成立问题
- 三次函数:\( f(x) = ax^3 + bx^2 + cx + d \)
- 幂函数: \(y = x^a\)
- 对勾函数与双刀函数
- 指数方程:\(a^{x}=b\)(\(a > 0\)且\(a\neq1\))
- 指数函数:\(y = a^{x}(a>0\),且\(a\neq1)\)
- 双曲函数与反双曲函数
- 对数函数:对数运算性质
- 角度制与弧度制、弧长公式
- 三角函数:定义、性质
- 三角函数:诱导公式、恒等变换、辅助角
- 反三角函数:\(\arcsin x\)
- 三角函数二级结论
- 极坐标:\((\rho,\theta)\)=(极径,极角)
- 参数方程
- 等差数列
- 等比数列
- 数学归纳法
- 求和符号(∑ )、连乘符号(∏)
- 数列极限、函数极限、两个重要极限
- 函数的连续性:间断点、运算法则
- 函数的导数
- 函数的图形
- 函数的微分
- 罗尔定理、拉格朗日、柯西中值定理
- 无穷小、无穷大、洛必达法则求极限
- 泰勒公式、麦克劳林公式
- 弧微分、曲率、渐屈线、渐伸线、摆线
- 方程的近似解:二分法、切线法、割线法
- 平面向量
- 复数 \(a + bi\)
- 多面体:棱柱、棱锥、棱台
- 旋转体:圆柱、圆锥、圆台
- 球、半球、球冠、球缺、球带
- 立体几何八大定理(平行与垂直)
