三角函数二级结论

1. 齐次式:若已知\(\tan\alpha = k\),则:

一次齐次式:\(\frac{a\sin\alpha + b\cos\alpha}{c\sin\alpha + d\cos\alpha} = \frac{ak + b}{ck + d}\)(\(c,k\)不同时为0);

二次齐次式:\(\frac{a\sin^2\alpha + b\sin\alpha\cos\alpha + c\cos^2\alpha}{d\sin^2\alpha + e\cos^2\alpha} = \frac{ak^2 + bk + c}{dk^2 + e}\)(\(d,e\)不同时为0);

特殊二次齐次式:\(\sin^2\alpha - \sin\alpha\cos\alpha - 2\cos^2\alpha = \frac{k^2 - k - 2}{k^2 + 1}\)(分子分母同除以\(\cos^2\alpha\)后结合\(\sin^2\alpha + \cos^2\alpha = 1\))。

2. \(\sin\alpha + \cos\alpha\)、\(\sin\alpha - \cos\alpha\)、\(\sin\alpha\cos\alpha\)三角关系:

设\(m = \sin\alpha + \cos\alpha\),\(n = \sin\alpha - \cos\alpha\),则\(m^2 + n^2 = 2\),\(m^2 - n^2 = 4\sin\alpha\cos\alpha\);

取值范围:\(m \in [-\sqrt{2}, \sqrt{2}]\),\(n \in [-\sqrt{2}, \sqrt{2}]\)。

3. 倒数关系:

若\(\tan\alpha = k\),则\(\cot\alpha = \frac{1}{k}\),且\(\sin\alpha = \pm\frac{k}{\sqrt{1 + k^2}}\),\(\cos\alpha = \pm\frac{1}{\sqrt{1 + k^2}}\)(符号由\(\alpha\)所在象限确定)。

4. 多角和差诱导:

\(\sin(\frac{\pi}{2} + \alpha) = \cos\alpha\),\(\cos(\frac{\pi}{2} + \alpha) = -\sin\alpha\);

\(\sin(\frac{3\pi}{2} + \alpha) = -\cos\alpha\),\(\cos(\frac{3\pi}{2} + \alpha) = \sin\alpha\);

\(\tan(\frac{\pi}{2} + \alpha) = -\cot\alpha\),\(\tan(\frac{3\pi}{2} + \alpha) = -\cot\alpha\)。

5. 周期诱导:

\(\sin(\alpha + 2k\pi) = \sin\alpha\),\(\cos(\alpha + 2k\pi) = \cos\alpha\),\(\tan(\alpha + k\pi) = \tan\alpha\)(\(k \in \mathbb{Z}\));

\(\sin(\alpha + \pi) = -\sin\alpha\),\(\cos(\alpha + \pi) = -\cos\alpha\),\(\cot(\alpha + \pi) = \cot\alpha\)。

6. 对称点诱导关系:

关于直线\(x = \frac{\pi}{2}\)对称:\(\sin(\pi - \alpha) = \sin\alpha\),\(\cos(\pi - \alpha) = -\cos\alpha\);

关于点\((\frac{\pi}{2}, 0)\)对称:\(\sin(\pi - \alpha) = \sin\alpha\),\(\cos(\pi - \alpha) = -\cos\alpha\)(与\(y\)轴对称结论一致,本质是对称性质的等价表达)。

7. 两角和差公式特殊形式:

\(\sin(A + B)\sin(A - B) = \sin^2A - \sin^2B\);

\(\cos(A + B)\cos(A - B) = \cos^2A - \sin^2B\);

\(\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}\)(反向应用可快速化简含正切差的表达式)。

8. 二倍角公式:

\(\sin 2\alpha = 2\sin\alpha\cos\alpha = \frac{2\tan\alpha}{1 + \tan^2\alpha}\)(万能形式);

\(\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha = \frac{1 - \tan^2\alpha}{1 + \tan^2\alpha}\);

\(\tan 2\alpha = \frac{2\tan\alpha}{1 - \tan^2\alpha}\),\(\cot 2\alpha = \frac{\cot^2\alpha - 1}{2\cot\alpha}\);

9. 半角公式:

\(\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1 - \cos\alpha}{2}}\)

\(\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1 + \cos\alpha}{2}}\)

\(\tan\frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha} = \frac{1 - \cos\alpha}{\sin\alpha} = \pm\sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}\)(符号由\(\frac{\alpha}{2}\)所在象限确定)。

10. 和差化积:

\(\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}\)

\(\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}\)

\(\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}\)

\(\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}\)

11.积化和差:

\(\sin A\sin B = -\frac{1}{2}[\cos(A+B) - \cos(A-B)]\)

\(\cos A\cos B = \frac{1}{2}[\cos(A+B) + \cos(A-B)]\)

\(\sin A\cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]\)

12. 辅助角公式:

\(a\sin\alpha + b\cos\alpha = A\sin(\alpha + \varphi) = A\cos(\alpha - \theta)\)

其中\(A = \sqrt{a^2 + b^2}\),\(\varphi = \arctan\frac{b}{a}\)(当\(a > 0\)时),\(\theta = \arctan\frac{a}{b}\)(当\(b > 0\)时);

\(\sin\alpha + \cos\alpha = \sqrt{2}\sin(\alpha + \frac{\pi}{4})\)

\(\sin\alpha - \cos\alpha = \sqrt{2}\sin(\alpha - \frac{\pi}{4})\)

\(\sqrt{3}\sin\alpha + \cos\alpha = 2\sin(\alpha + \frac{\pi}{6})\)

13. 三倍角公式:

\(\sin 3\alpha = 3\sin\alpha - 4\sin^3\alpha\);

\(\cos 3\alpha = 4\cos^3\alpha - 3\cos\alpha\);

\(\tan 3\alpha = \frac{3\tan\alpha - \tan^3\alpha}{1 - 3\tan^2\alpha}\)。

14. 三角形内角恒等推论:

在\(\triangle ABC\)中,\(\sin(A + B) = \sin C\),\(\cos(A + B) = -\cos C\),\(\tan(A + B) = -\tan C\);

\(\sin\frac{A+B}{2} = \cos\frac{C}{2}\),\(\cos\frac{A+B}{2} = \sin\frac{C}{2}\);

\(\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C\);

\(\cos 2A + \cos 2B + \cos 2C = -1 - 4\cos A\cos B\cos C\)。

15. 周期函数复杂形式周期判断:

\(y = A\sin(\omega x + \varphi) + B\)、\(y = A\cos(\omega x + \varphi) + B\)的最小正周期\(T = \frac{2\pi}{|\omega|}\);

\(y = A\tan(\omega x + \varphi) + B\)、\(y = A\cot(\omega x + \varphi) + B\)的最小正周期\(T = \frac{\pi}{|\omega|}\);

\(y = |\sin(\omega x + \varphi)|\)、\(y = |\cos(\omega x + \varphi)|\)的最小正周期\(T = \frac{\pi}{|\omega|}\);

\(y = |\tan(\omega x + \varphi)|\)、\(y = |\cot(\omega x + \varphi)|\)的最小正周期\(T = \frac{\pi}{|\omega|}\)(与原函数周期一致,因绝对值不改变正切、余切的周期);

复合函数周期:若\(f(x)\)的周期为\(T\),则\(f(kx + b)\)的周期为\(\frac{T}{|k|}\)(\(k \neq 0\))。

16. 单调区间精准求解推论:

对于\(y = A\sin(\omega x + \varphi)\)(\(A > 0\),\(\omega > 0\)):

增区间:\(\omega x + \varphi \in [-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi]\)(\(k \in \mathbb{Z}\)),解得\(x \in [\frac{-\frac{\pi}{2} + 2k\pi - \varphi}{\omega}, \frac{\frac{\pi}{2} + 2k\pi - \varphi}{\omega}]\);

减区间:\(\omega x + \varphi \in [\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi]\)(\(k \in \mathbb{Z}\)),解得\(x \in [\frac{\frac{\pi}{2} + 2k\pi - \varphi}{\omega}, \frac{\frac{3\pi}{2} + 2k\pi - \varphi}{\omega}]\);

若\(A < 0\)或\(\omega < 0\),需先转化为\(A > 0\)、\(\omega > 0\)的形式(利用诱导公式),再求单调区间。

17. 对称轴与对称中心拓展:

\(y = A\sin(\omega x + \varphi)\):对称轴\(x = \frac{\frac{\pi}{2} + k\pi - \varphi}{\omega}\)(\(k \in \mathbb{Z}\)),对称中心\((\frac{k\pi - \varphi}{\omega}, B)\)(\(k \in \mathbb{Z}\));

\(y = A\cos(\omega x + \varphi)\):对称轴\(x = \frac{k\pi - \varphi}{\omega}\)(\(k \in \mathbb{Z}\)),对称中心\((\frac{\frac{\pi}{2} + k\pi - \varphi}{\omega}, B)\)(\(k \in \mathbb{Z}\));

\(y = A\tan(\omega x + \varphi)\):无对称轴,对称中心\((\frac{k\pi}{2\omega} - \frac{\varphi}{\omega}, B)\)(\(k \in \mathbb{Z}\))。

18. 最值问题隐含条件推论:

对于\(y = a\sin x + b\cos x + c\),最大值为\(c + \sqrt{a^2 + b^2}\),最小值为\(c - \sqrt{a^2 + b^2}\);

对于\(y = \sin^2x + \sin x + 1\),令\(t = \sin x \in [-1, 1]\),转化为二次函数\(y = t^2 + t + 1\),最大值在\(t = 1\)时取得为\(3\),最小值在\(t = -\frac{1}{2}\)时取得为\(\frac{3}{4}\)(利用二次函数在闭区间的最值性质)。

19. 正弦定理拓展推论:

\(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R\)(\(R\)为外接圆半径),则:

\(a = 2R\sin A\),\(b = 2R\sin B\),\(c = 2R\sin C\);

\(a\sin B = b\sin A\),\(a\sin C = c\sin A\),\(b\sin C = c\sin B\);

\(\frac{a + b + c}{\sin A + \sin B + \sin C} = 2R\)(合比定理应用)。

20. 余弦定理变形与应用:

\(a^2 = b^2 + c^2 - 2bc\cos A\),变形为\(\cos A = \frac{b^2 + c^2 - a^2}{2bc}\);

若\(A = 60^\circ\),则\(a^2 = b^2 + c^2 - bc\);若\(A = 120^\circ\),则\(a^2 = b^2 + c^2 + bc\);

三角形中,\(a > b \Leftrightarrow A > B \Leftrightarrow \sin A > \sin B\)(大边对大角,大角对大边的等价表达)。

21. 三角形面积公式大全:

基本公式:\(S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c\)(\(h_a, h_b, h_c\)分别为\(a, b, c\)边上的高);

边角公式:\(S = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B\);

外接圆半径相关:\(S = \frac{abc}{4R}\);

内切圆半径相关:\(S = r \cdot s\)(\(s = \frac{a + b + c}{2}\)为半周长);

海伦公式:\(S = \sqrt{s(s - a)(s - b)(s - c)}\);

向量公式:\(S = \frac{1}{2}|\overrightarrow{AB} \times \overrightarrow{AC}|\)(平面向量叉乘的模长应用);

坐标公式:若\(A(x_1,y_1)\),\(B(x_2,y_2)\),\(C(x_3,y_3)\),则\(S = \frac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|\)。

22. 射影定理与其他推论:

射影定理:\(a = b\cos C + c\cos B\),\(b = a\cos C + c\cos A\),\(c = a\cos B + b\cos A\);

角平分线定理:若\(AD\)为\(\angle BAC\)的平分线,交\(BC\)于\(D\),则\(\frac{BD}{DC} = \frac{AB}{AC}\);

中线定理:若\(AD\)为\(BC\)边上的中线,则\(AB^2 + AC^2 = 2AD^2 + 2BD^2\);

高的公式:\(h_a = b\sin C = c\sin B = \frac{2S}{a}\)。

23. 反三角函数运算推论:

\(\arcsin x + \arccos x = \frac{\pi}{2}\)(\(x \in [-1, 1]\));

\(\arctan x + \arccot x = \frac{\pi}{2}\)(\(x \in \mathbb{R}\));

\(\arctan x + \arctan y = \arctan\frac{x + y}{1 - xy}\)(当\(xy < 1\)时),\(\arctan x + \arctan y = \pi + \arctan\frac{x + y}{1 - xy}\)(当\(x > 0\),\(y > 0\),\(xy > 1\)时),\(\arctan x + \arctan y = -\pi + \arctan\frac{x + y}{1 - xy}\)(当\(x < 0\),\(y < 0\),\(xy > 1\)时)。

24. 特殊角三角函数值延伸:

\(15^\circ\)相关:\(\sin15^\circ = \cos75^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}\),\(\cos15^\circ = \sin75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}\),\(\tan15^\circ = 2 - \sqrt{3}\),\(\cot15^\circ = 2 + \sqrt{3}\);

\(22.5^\circ\)相关:\(\sin22.5^\circ = \sqrt{\frac{2 - \sqrt{2}}{2}}\),\(\cos22.5^\circ = \sqrt{\frac{2 + \sqrt{2}}{2}}\),\(\tan22.5^\circ = \sqrt{2} - 1\);

\(67.5^\circ\)相关:\(\sin67.5^\circ = \sqrt{\frac{2 + \sqrt{2}}{2}}\),\(\cos67.5^\circ = \sqrt{\frac{2 - \sqrt{2}}{2}}\),\(\tan67.5^\circ = \sqrt{2} + 1\);

\(105^\circ\)相关:\(\sin105^\circ = \sin75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}\),\(\cos105^\circ = -\cos75^\circ = -\frac{\sqrt{6} - \sqrt{2}}{4}\),\(\tan105^\circ = -\tan75^\circ = -(2 + \sqrt{3})\)。

25. 常见三角函数不等式:

当\(x \in (0, \frac{\pi}{2})\)时,\(\sin x < x < \tan x\);

当\(x \in \mathbb{R}\)时,\(|\sin x| \leq 1\),\(|\cos x| \leq 1\);

当\(x \in [0, \frac{\pi}{2}]\)时,\(\sin x \leq x\),\(\cos x \leq 1 - \frac{x^2}{2}\)(泰勒展开近似,可用于不等式证明);

对任意角\(\alpha\),\(\sin^2\alpha + \cos^2\alpha = 1\),\(\sin^2\alpha \leq 1\),\(\cos^2\alpha \leq 1\)。

26. 三角函数化简技巧结论:

切割化弦:将正切、余切、正割、余割转化为正弦、余弦,简化表达式;

异名化同名:利用诱导公式或辅助角公式,将不同三角函数名转化为同一函数名;

异角化同角:通过和差、倍半角公式,将不同角度转化为同一角度;

高次降幂:利用二倍角降幂公式,将高次三角函数转化为低次,便于化简或求值。

27. 三角函数方程求解推论:

\(\sin x = \sin\alpha\)的解为\(x = k\pi + (-1)^k\alpha\)(\(k \in \mathbb{Z}\));

\(\cos x = \cos\alpha\)的解为\(x = 2k\pi \pm \alpha\)(\(k \in \mathbb{Z}\));

\(\tan x = \tan\alpha\)的解为\(x = k\pi + \alpha\)(\(k \in \mathbb{Z}\),\(x \neq \frac{\pi}{2} + n\pi\),\(n \in \mathbb{Z}\))。

例题1:齐次式与三角恒等变换综合:已知\(\tan\alpha = 2\),求\(\frac{\sin 2\alpha - \cos^2\alpha}{1 + \cos 2\alpha}\)的值。

解析:

先将分子分母转化为齐次式或利用二倍角公式化简。分子\(\sin 2\alpha - \cos^2\alpha = 2\sin\alpha\cos\alpha - \cos^2\alpha\)(二倍角公式),分母\(1 + \cos 2\alpha = 2\cos^2\alpha\)(降幂公式)。分子分母同除以\(\cos^2\alpha\)得\(\frac{2\tan\alpha - 1}{2}\),代入\(\tan\alpha = 2\),得\(\frac{4 - 1}{2} = \frac{3}{2}\)。

例题2:三角形内角三角函数求值:在\(\triangle ABC\)中,\(\tan A = 2\),\(\tan B = 3\),求\(\sin C\)的值。

解析:

由三角形内角和\(A + B + C = \pi\),得\(C = \pi - (A + B)\),故\(\sin C = \sin(A + B)\)。先求\(\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{2 + 3}{1 - 6} = -1\),则\(A + B = \frac{3\pi}{4}\),故\(C = \frac{\pi}{4}\),\(\sin C = \frac{\sqrt{2}}{2}\)。

例题3:辅助角公式与最值综合:求函数\(y = 3\sin x + 4\cos x - 2\)的最大值、最小值及对应的\(x\)值。

解析:

利用辅助角公式,\(3\sin x + 4\cos x = 5\sin(x + \varphi)\),其中\(\tan\varphi = \frac{4}{3}\)。故\(y = 5\sin(x + \varphi) - 2\)。最大值为\(5 \times 1 - 2 = 3\),此时\(x + \varphi = \frac{\pi}{2} + 2k\pi\),\(x = \frac{\pi}{2} - \varphi + 2k\pi\)(\(k \in \mathbb{Z}\));最小值为\(5 \times (-1) - 2 = -7\),此时\(x + \varphi = \frac{3\pi}{2} + 2k\pi\),\(x = \frac{3\pi}{2} - \varphi + 2k\pi\)(\(k \in \mathbb{Z}\))。

例题4:解三角形与面积公式综合:在\(\triangle ABC\)中,\(a = 2\sqrt{3}\),\(b = 2\),\(C = 60^\circ\),求\(c\)及\(\triangle ABC\)的面积\(S\),并求外接圆半径\(R\)。

解析:

由余弦定理,\(c^2 = a^2 + b^2 - 2ab\cos C = 12 + 4 - 2 \times 2\sqrt{3} \times 2 \times \frac{1}{2} = 8\),故\(c = 2\sqrt{2}\)。面积\(S = \frac{1}{2}ab\sin C = \frac{1}{2} \times 2\sqrt{3} \times 2 \times \frac{\sqrt{3}}{2} = 3\)。由正弦定理\(\frac{c}{\sin C} = 2R\),得\(R = \frac{c}{2\sin C} = \frac{2\sqrt{2}}{2 \times \frac{\sqrt{3}}{2}} = \frac{2\sqrt{6}}{3}\)。

例题5:三角函数周期与单调区间综合:求函数\(y = |\sin(2x - \frac{\pi}{3})|\)的最小正周期及单调递增区间。

解析:

\(y = \sin(2x - \frac{\pi}{3})\)的周期为\(\pi\),绝对值后周期变为\(\frac{\pi}{2}\)。令\(k\pi \leq 2x - \frac{\pi}{3} \leq \frac{\pi}{2} + k\pi\)(\(k \in \mathbb{Z}\)),解得\(\frac{\pi}{6} + \frac{k\pi}{2} \leq x \leq \frac{5\pi}{12} + \frac{k\pi}{2}\)(\(k \in \mathbb{Z}\)),即单调递增区间为\([\frac{\pi}{6} + \frac{k\pi}{2}, \frac{5\pi}{12} + \frac{k\pi}{2}]\)(\(k \in \mathbb{Z}\))。

例题6:反三角函数运算:计算\(\arctan 1 + \arctan 2 + \arctan 3\)的值。

解析:

设\(\arctan 2 = \alpha\),\(\arctan 3 = \beta\),则\(\tan\alpha = 2\),\(\tan\beta = 3\),且\(\alpha, \beta \in (\frac{\pi}{4}, \frac{\pi}{2})\),故\(\alpha + \beta \in (\frac{\pi}{2}, \pi)\)。\(\tan(\alpha + \beta) = \frac{2 + 3}{1 - 6} = -1\),故\(\alpha + \beta = \frac{3\pi}{4}\)。又\(\arctan 1 = \frac{\pi}{4}\),故原式\(= \frac{\pi}{4} + \frac{3\pi}{4} = \pi\)。

例题7:三角恒等变换与不等式证明:当\(x \in (0, \frac{\pi}{2})\)时,\(\sin x + \cos x > 1\)。

解析:

将左边平方得\((\sin x + \cos x)^2 = \sin^2x + 2\sin x\cos x + \cos^2x = 1 + \sin 2x\)。因\(x \in (0, \frac{\pi}{2})\),故\(2x \in (0, \pi)\),\(\sin 2x > 0\),则\((\sin x + \cos x)^2 > 1\)。又\(\sin x + \cos x > 0\),故\(\sin x + \cos x > 1\)。

例题8:三角函数方程求解:解方程\(\sin 2x = \cos x\)。

解析:

利用二倍角公式转化为\(2\sin x\cos x - \cos x = 0\),提取公因式得\(\cos x(2\sin x - 1) = 0\)。则\(\cos x = 0\)或\(2\sin x - 1 = 0\)。\(\cos x = 0\)的解为\(x = \frac{\pi}{2} + k\pi\)(\(k \in \mathbb{Z}\));\(2\sin x - 1 = 0\)即\(\sin x = \frac{1}{2}\),解为\(x = \frac{\pi}{6} + 2k\pi\)或\(x = \frac{5\pi}{6} + 2k\pi\)(\(k \in \mathbb{Z}\))。综上,方程的解为\(x = \frac{\pi}{2} + k\pi\)或\(x = \frac{\pi}{6} + 2k\pi\)或\(x = \frac{5\pi}{6} + 2k\pi\)(\(k \in \mathbb{Z}\))。

例题9:三角形边角关系与最值综合:在\(\triangle ABC\)中,角\(A, B, C\)所对的边分别为\(a, b, c\),且\(a = 1\),\(B = 45^\circ\),\(\triangle ABC\)的面积为\(2\),求\(b\)的值。

解析:

由面积公式\(S = \frac{1}{2}ac\sin B = 2\),代入\(a = 1\),\(B = 45^\circ\),得\(\frac{1}{2} \times 1 \times c \times \frac{\sqrt{2}}{2} = 2\),解得\(c = 4\sqrt{2}\)。由余弦定理,\(b^2 = a^2 + c^2 - 2ac\cos B = 1 + 32 - 2 \times 1 \times 4\sqrt{2} \times \frac{\sqrt{2}}{2} = 33 - 8 = 25\),故\(b = 5\)。

例题10:三角函数图像平移与性质综合:将函数\(y = \sin 2x\)的图像向左平移\(\frac{\pi}{6}\)个单位,得到函数\(y = f(x)\)的图像,求\(f(x)\)的解析式及对称轴方程。

解析:

平移后\(f(x) = \sin[2(x + \frac{\pi}{6})] = \sin(2x + \frac{\pi}{3})\)。对称轴方程满足\(2x + \frac{\pi}{3} = \frac{\pi}{2} + k\pi\)(\(k \in \mathbb{Z}\)),解得\(x = \frac{\pi}{12} + \frac{k\pi}{2}\)(\(k \in \mathbb{Z}\))。

例题11:三倍角公式应用:求\(\sin 18^\circ \cos 36^\circ\)的值。

解析:

利用倍角公式和三倍角公式变形。原式\(= \frac{2\sin 18^\circ \cos 18^\circ \cos 36^\circ}{2\cos 18^\circ} = \frac{\sin 36^\circ \cos 36^\circ}{2\cos 18^\circ} = \frac{\sin 72^\circ}{4\cos 18^\circ}\)。因\(\sin 72^\circ = \cos 18^\circ\),故原式\(= \frac{\cos 18^\circ}{4\cos 18^\circ} = \frac{1}{4}\)。

例题12:三角函数复合函数最值:求函数\(y = \sin^2x - 2\sin x + 3\)的最大值和最小值。

解析:

令\(t = \sin x\),则\(t \in [-1, 1]\),函数转化为\(y = t^2 - 2t + 3\)。这是开口向上的二次函数,对称轴为\(t = 1\)。当\(t = 1\)时,\(y_{\min} = 1 - 2 + 3 = 2\);当\(t = -1\)时,\(y_{\max} = 1 + 2 + 3 = 6\)。

例题13:解三角形与角平分线定理综合:在\(\triangle ABC\)中,\(AB = 3\),\(AC = 4\),\(\angle BAC = 60^\circ\),\(AD\)为\(\angle BAC\)的角平分线,求\(AD\)的长度。

解析:

由角平分线定理,\(\frac{BD}{DC} = \frac{AB}{AC} = \frac{3}{4}\)。设\(BD = 3k\),\(DC = 4k\),则\(BC = 7k\)。由余弦定理,\(BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cos 60^\circ = 9 + 16 - 12 = 13\),故\(BC = \sqrt{13}\),\(k = \frac{\sqrt{13}}{7}\)。再由角平分线长度公式(推导:\(S_{\triangle ABD} + S_{\triangle ACD} = S_{\triangle ABC}\)),\(\frac{1}{2}AB \cdot AD \sin 30^\circ + \frac{1}{2}AC \cdot AD \sin 30^\circ = \frac{1}{2}AB \cdot AC \sin 60^\circ\),代入得\(\frac{1}{2} \times 3 \times AD \times \frac{1}{2} + \frac{1}{2} \times 4 \times AD \times \frac{1}{2} = \frac{1}{2} \times 3 \times 4 \times \frac{\sqrt{3}}{2}\),解得\(AD = \frac{12\sqrt{3}}{7}\)。

例题14:三角函数诱导公式与化简综合:化简:\(\frac{\sin(\pi - \alpha)\cos(2\pi - \alpha)\tan(-\alpha + \pi)}{-\tan(-\alpha - \pi)\sin(-\pi - \alpha)}\)。

解析:

利用诱导公式逐步化简。\(\sin(\pi - \alpha) = \sin\alpha\),\(\cos(2\pi - \alpha) = \cos\alpha\),\(\tan(-\alpha + \pi) = -\tan\alpha\),\(-\tan(-\alpha - \pi) = \tan(\alpha + \pi) = \tan\alpha\),\(\sin(-\pi - \alpha) = \sin\alpha\)。代入原式得\(\frac{\sin\alpha \cdot \cos\alpha \cdot (-\tan\alpha)}{\tan\alpha \cdot \sin\alpha} = -\cos\alpha\)。

例题15:三角函数不等式求解:求不等式\(\sin x \geq \frac{1}{2}\)的解集。

解析:

结合正弦函数图像,\(\sin x = \frac{1}{2}\)的解为\(x = \frac{\pi}{6} + 2k\pi\)或\(x = \frac{5\pi}{6} + 2k\pi\)(\(k \in \mathbb{Z}\))。故不等式的解集为\([\frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi]\)(\(k \in \mathbb{Z}\))。

例题16:三角形外接圆与内切圆半径综合:在\(\triangle ABC\)中,\(a = 5\),\(b = 12\),\(c = 13\),求外接圆半径\(R\)和内切圆半径\(r\)。

解析:

先判断三角形形状,\(5^2 + 12^2 = 13^2\),故\(\triangle ABC\)为直角三角形,直角在\(C\)点。外接圆半径\(R = \frac{c}{2} = \frac{13}{2}\)(直角三角形外接圆直径为斜边)。半周长\(s = \frac{5 + 12 + 13}{2} = 15\),面积\(S = \frac{1}{2} \times 5 \times 12 = 30\)。由\(S = r \cdot s\),得\(r = \frac{S}{s} = \frac{30}{15} = 2\)。

例题17:辅助角公式与三角函数图像综合:已知函数\(y = A\sin(\omega x + \varphi)\)(\(A > 0\),\(\omega > 0\),\(|\varphi| < \frac{\pi}{2}\))的部分图像经过点\((0, 1)\),且在\(x = \frac{\pi}{3}\)时取得最大值\(2\),求函数解析式。

解析:

由最大值为\(2\)得\(A = 2\)。将点\((0, 1)\)代入得\(2\sin\varphi = 1\),即\(\sin\varphi = \frac{1}{2}\)。因\(|\varphi| < \frac{\pi}{2}\),故\(\varphi = \frac{\pi}{6}\)。当\(x = \frac{\pi}{3}\)时,\(\omega \times \frac{\pi}{3} + \frac{\pi}{6} = \frac{\pi}{2} + 2k\pi\)(\(k \in \mathbb{Z}\)),解得\(\omega = 1 + 6k\)。取\(k = 0\)(\(\omega > 0\),最小正周期通常取最小\(\omega\)),故\(\omega = 1\)。函数解析式为\(y = 2\sin(x + \frac{\pi}{6})\)。

例题18:三角恒等变换与求值综合:已知\(\cos(\alpha - \frac{\pi}{6}) = -\frac{1}{3}\),\(\alpha \in (\frac{\pi}{2}, \pi)\),求\(\cos\alpha\)的值。

解析:

将\(\alpha\)拆分为\((\alpha - \frac{\pi}{6}) + \frac{\pi}{6}\),利用两角和的余弦公式。\(\alpha \in (\frac{\pi}{2}, \pi)\),故\(\alpha - \frac{\pi}{6} \in (\frac{\pi}{3}, \frac{5\pi}{6})\),\(\sin(\alpha - \frac{\pi}{6}) = \sqrt{1 - \cos^2(\alpha - \frac{\pi}{6})} = \frac{2\sqrt{2}}{3}\)。\(\cos\alpha = \cos[(\alpha - \frac{\pi}{6}) + \frac{\pi}{6}] = \cos(\alpha - \frac{\pi}{6})\cos\frac{\pi}{6} - \sin(\alpha - \frac{\pi}{6})\sin\frac{\pi}{6} = -\frac{1}{3} \times \frac{\sqrt{3}}{2} - \frac{2\sqrt{2}}{3} \times \frac{1}{2} = -\frac{\sqrt{3} + 2\sqrt{2}}{6}\)。

例题19:三角函数周期与奇偶性综合:判断函数\(f(x) = \sin(2x + \frac{\pi}{2})\)的奇偶性,并求其最小正周期。

解析:

化简\(f(x) = \cos 2x\)(诱导公式)。定义域为\(\mathbb{R}\),关于原点对称,且\(f(-x) = \cos(-2x) = \cos 2x = f(x)\),故\(f(x)\)为偶函数。最小正周期\(T = \frac{2\pi}{2} = \pi\)。

例题20:解三角形与中线定理综合:在\(\triangle ABC\)中,\(AB = 2\),\(AC = 4\),\(BC\)边上的中线\(AD = \sqrt{6}\),求\(BC\)的长度。

解析:

由中线定理,\(AB^2 + AC^2 = 2AD^2 + 2BD^2\)。代入数据得\(4 + 16 = 2 \times 6 + 2BD^2\),即\(20 = 12 + 2BD^2\),解得\(BD^2 = 4\),\(BD = 2\)。故\(BC = 2BD = 4\)。

数学基础 : 小学数学、初中数学、高中数学、高等数学