立体几何 08 旋转体的分类
旋转体是由一个平面图形绕着一条定直线旋转所形成的封闭几何体,常见的分类如下:
圆柱
定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,平行于轴的边都叫做圆柱侧面的母线。
性质
圆柱的两个底面是半径相等的圆,且互相平行。
圆柱的母线都平行且相等,并且母线的长度等于圆柱的高。
圆柱的轴截面是一个矩形,其一边长为底面圆的直径,另一边长为圆柱的高。
应用:在生活和工业中,圆柱形状的物体非常常见,如圆柱形的水杯、管道、电池等。
圆锥
定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。旋转轴叫做圆锥的轴;垂直于轴的边旋转而成的圆面叫做圆锥的底面;斜边旋转而成的曲面叫做圆锥的侧面;无论旋转到什么位置,斜边都叫做圆锥侧面的母线。
性质
圆锥有一个圆形底面和一个顶点。
圆锥的母线都相等,且所有母线相交于顶点。
圆锥的轴截面是一个等腰三角形,其底边长为底面圆的直径,腰长为母线长。
应用:如漏斗、圣诞帽等都是圆锥形状的物体,在建筑设计中也会用到圆锥的造型。
圆台
定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。圆台也可以看作是以直角梯形垂直于底边的腰所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体。
性质
圆台有两个大小不同的圆形底面,且这两个底面互相平行。
圆台的母线都相等,且延长后相交于一点。
圆台的轴截面是一个等腰梯形,其上底和下底分别为圆台上下底面圆的直径,腰长为母线长。
应用:圆台形状常用于制作灯罩、烟囱等。
球
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。半圆的圆心叫做球心;连接球心和球面上任意一点的线段叫做球的半径;连接球面上两点并且经过球心的线段叫做球的直径。
性质
球面上任意一点到球心的距离都等于球的半径。
球的截面是圆,过球心的截面圆叫做大圆,不过球心的截面圆叫做小圆。
应用:在体育领域,足球、篮球等球类都是球体;在天文学中,地球、月球等天体也近似看作球体。
数学基础 : 小学数学、初中数学、高中数学、高等数学
- 指数函数 04 根式运算、化简、根式不等式、有理化
- 指数函数 04 指数方程:\(a^{x}=b\)(\(a > 0\)且\(a\neq1\))
- 指数函数 04 指数函数:\(y = a^{x}(a>0\),且\(a\neq1)\)
- 对数函数 04 对数运算与对数函数
- 高中数学 05 三角函数
- 三角函数 05 终边相同、相反、同直线、同射线、垂直的角
- 三角函数 05 轴线角与象限角
- 三角函数 05 弧度制下弧长公式与扇形面积公式
- 三角函数 05 三角函数诱导公式
- 三角函数 05 两角和与差的三角函数公式
- 三角函数 05 三角函数恒等变换
- 三角函数 05 加权同角三角函数和相结合的辅助角公式
- 高中数学 06 平面向量及其应用
- 平面向量 06 平面向量的概念、共线向量、零向量
- 平面向量 06 三点共线、四点不共线等
- 平面向量 06 向量加法:三角形、平行四边形法则、运算律
- 平面向量 06 向量减法、相反向量
- 平面向量 06 向量的数乘 \(\lambda\overrightarrow{a}\)
- 平面向量 06 共线向量基本定理:\(\overrightarrow{n}=\lambda\overrightarrow{a}\)
- 平面向量 06 向量线性运算的重要结论
- 平面向量 06 向量数量积(内积)
- 复数 07 复数 \(a + bi\)、几何意义、共轭复数、加减乘除运算
- 复数 07 复数的向量形式、三角形式、欧拉形式、指数形式
- 立体几何 08 立体几何初步
- 立体几何 08 多面体的分类
- 立体几何 08 旋转体的分类
- 立体几何 08 棱柱的定义、分类、性质
- 立体几何 08 棱锥的定义、分类、性质
- 立体几何 08 棱台的定义、分类、性质
- 立体几何 08 圆柱的定义、分类、性质
- 立体几何 08 圆锥的定义、性质
- 立体几何 08 圆台的定义、性质
- 立体几何 08 球、半球、球冠、球缺、球带
- 立体几何 08 立体几何八大定理
- 立体几何 08 三垂线定理
- 立体几何 08 二面角
- 高中数学 09 统计
- 高中数学 10 概率
- 高中数学 11 空间向量与立体几何
- 高中数学 11 空间向量
- 解析几何 12 直线和圆的方程
- 解析几何 12 有向线段、两点距离、定比分点
- 解析几何 12 直线的倾斜角与斜率
- 解析几何 12 平面直线方程、直线系方程
- 解析几何 12 两条直线的位置关系、夹角
- 解析几何 12 点到直线的距离、平行线间的距离
- 解析几何 12 求点的轨迹方程
- 解析几何 12 圆的标准式、一般式、直径式、参数式方程
- 解析几何 12 曲线的交点(曲直联立)
- 解析几何 12 点、线、圆与圆的位置关系