不定积分:积分表

一、不定积分的定义

若函数\( F(x) \)在区间\( I \)上的导数为\( f(x) \),即对任意\( x \in I \),都有\( F'(x) = f(x) \)或\( dF(x) = f(x)dx \),则称\( F(x) \)为\( f(x) \)在区间\( I \)上的一个原函数。

函数\( f(x) \)在区间\( I \)上的所有原函数的集合,称为\( f(x) \)在区间\( I \)上的不定积分,记作\( \int f(x)dx \)。若\( F(x) \)是\( f(x) \)的一个原函数,则\( \int f(x)dx = F(x) + C \),其中\( C \)为任意常数(积分常数),“\( \int \)”为积分符号,\( f(x) \)为被积函数,\( f(x)dx \)为被积表达式,\( x \)为积分变量。

需注意,不定积分的结果是一个函数族而非单个函数,积分常数\( C \)不可遗漏,仅当给定初始条件时,才能确定唯一的原函数。

二、不定积分的几何意义

不定积分\( \int f(x)dx = F(x) + C \)的几何意义是:表示以\( f(x) \)为斜率的一族平行曲线。这族曲线中任意两条曲线,对应同一横坐标\( x \)的值,其纵坐标相差一个常数。

具体来说,每一个确定的积分常数\( C \),对应一条确定的曲线\( y = F(x) + C \),该曲线称为\( f(x) \)的一条积分曲线。积分曲线族中所有曲线在横坐标为\( x \)的点处的切线斜率都等于\( f(x) \),因此这些曲线彼此平行。若已知积分曲线经过某一固定点\( (x_0, y_0) \),可代入\( y = F(x) + C \)确定\( C \)的值,从而得到唯一的积分曲线。

三、不定积分的性质

1. 导数与积分的互逆性:\( \frac{d}{dx}[\int f(x)dx] = f(x) \)或\( d[\int f(x)dx] = f(x)dx \);反之,\( \int F'(x)dx = F(x) + C \)或\( \int dF(x) = F(x) + C \)。这一性质体现了微分与积分的互逆关系,对不定积分求导还原被积函数,对函数求导后积分得原函数加积分常数。

2. 线性性质

常数因子可提出:\( \int kf(x)dx = k\int f(x)dx \)(\( k \)为非零常数);若\( k = 0 \),不定积分结果为\( C \),公式仍成立。

和差积分等于积分和差:\( \int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx \),可推广到有限个函数的和差情形。

四、基本积分表

基本积分表是不定积分计算的基础,复杂积分需转化为表中形式求解,核心公式如下:

1. \( \int 0dx = C \)

2. \( \int x^\mu dx = \frac{x^{\mu + 1}}{\mu + 1} + C \)(\( \mu \neq -1 \))

3. \( \int \frac{1}{x}dx = \ln|x| + C \)

4. \( \int a^x dx = \frac{a^x}{\ln a} + C \)(\( a > 0 \)且\( a \neq 1 \))

5. \( \int e^x dx = e^x + C \)

6. \( \int \sin x dx = -\cos x + C \)

7. \( \int \cos x dx = \sin x + C \)

8. \( \int \sec^2 x dx = \tan x + C \)

9. \( \int \csc^2 x dx = -\cot x + C \)

10. \( \int \sec x \tan x dx = \sec x + C \)

11. \( \int \csc x \cot x dx = -\csc x + C \)

12. \( \int \frac{1}{\sqrt{1 - x^2}}dx = \arcsin x + C = -\arccos x + C \)

13. \( \int \frac{1}{1 + x^2}dx = \arctan x + C = -\text{arccot} x + C \)

14. \( \int \sec x dx = \ln|\sec x + \tan x| + C \)

15. \( \int \csc x dx = \ln|\csc x - \cot x| + C \)

五、直接积分法

直接积分法利用基本积分表、不定积分性质,结合代数变形(因式分解、通分等)或三角恒等变换,将被积函数转化为表中可直接求解的形式,是最基础的积分方法。

例题1:计算\( \int (3x^2 - 2x + 5)dx \)

解:

利用线性性质拆分积分,结合幂函数积分公式:

\( \int (3x^2 - 2x + 5)dx = 3\int x^2 dx - 2\int x dx + 5\int 1dx = 3 \times \frac{x^3}{3} - 2 \times \frac{x^2}{2} + 5x + C = x^3 - x^2 + 5x + C \)

例题2:计算\( \int \frac{x^3 - 2x^2 + x}{x^2}dx \)(\( x \neq 0 \))

解:

拆分被积函数后积分:

\( \int \frac{x^3 - 2x^2 + x}{x^2}dx = \int (x - 2 + \frac{1}{x})dx = \int x dx - 2\int 1dx + \int \frac{1}{x}dx = \frac{1}{2}x^2 - 2x + \ln|x| + C \)

例题3:计算\( \int (3^x - e^x + 2^x e^x)dx \)

解:

利用指数函数积分公式,注意\( 2^x e^x = (2e)^x \):

\( \int (3^x - e^x + (2e)^x)dx = \frac{3^x}{\ln 3} - e^x + \frac{(2e)^x}{\ln(2e)} + C = \frac{3^x}{\ln 3} - e^x + \frac{2^x e^x}{1 + \ln 2} + C \)

例题4:计算\( \int \cot^2 x dx \)

解:

利用三角恒等变换\( \cot^2 x = \csc^2 x - 1 \):

\( \int \cot^2 x dx = \int (\csc^2 x - 1)dx = \int \csc^2 x dx - \int 1dx = -\cot x - x + C \)

例题5:计算\( \int \frac{1}{1 - x^2}dx \)

解:

分式拆分:\( \frac{1}{1 - x^2} = \frac{1}{2}(\frac{1}{1 + x} + \frac{1}{1 - x}) \)

积分得:\( \frac{1}{2}\int (\frac{1}{1 + x} + \frac{1}{1 - x})dx = \frac{1}{2}[\ln|1 + x| - \ln|1 - x|] + C = \frac{1}{2}\ln|\frac{1 + x}{1 - x}| + C \)

例题6:计算\( \int (2\sin x - 3\cos x)dx \)

解:

利用三角函数积分公式:

\( \int (2\sin x - 3\cos x)dx = 2\int \sin x dx - 3\int \cos x dx = -2\cos x - 3\sin x + C \)

例题7:计算\( \int \frac{x^2}{1 + x^2}dx \)

解:

变形被积函数:\( \frac{x^2}{1 + x^2} = 1 - \frac{1}{1 + x^2} \)

积分得:\( \int (1 - \frac{1}{1 + x^2})dx = x - \arctan x + C \)

例题8:计算\( \int \sin^2 \frac{x}{2}dx \)

解:

利用三角恒等式\( \sin^2 \frac{x}{2} = \frac{1 - \cos x}{2} \):

\( \int \frac{1 - \cos x}{2}dx = \frac{1}{2}\int 1dx - \frac{1}{2}\int \cos x dx = \frac{1}{2}x - \frac{1}{2}\sin x + C \)

六、换元积分法

当被积函数无法直接求解时,通过变量替换转化为简单积分,分为第一类换元法(凑微分法)和第二类换元法。

(一)第一类换元法(凑微分法)

设\( f(u) \)有原函数\( F(u) \),\( u = \varphi(x) \)可导,则\( \int f[\varphi(x)]\varphi'(x)dx = \int f(u)du = F[\varphi(x)] + C \)。核心是“凑微分”,将\( \varphi'(x)dx \)转化为\( du \)。

(二)第二类换元法

设\( x = \psi(t) \)单调可导且\( \psi'(t) \neq 0 \),若\( f[\psi(t)]\psi'(t) \)有原函数\( G(t) \),则\( \int f(x)dx = G[\psi^{-1}(x)] + C \)。核心是通过主动替换消除根号等复杂结构,常见三角代换、根式代换、倒代换。

例题9:计算\( \int x \sqrt{1 - x^2}dx \)(第一类换元法)

解:

设\( u = 1 - x^2 \),则\( du = -2x dx \),即\( x dx = -\frac{1}{2}du \):

\( \int x \sqrt{1 - x^2}dx = -\frac{1}{2}\int u^{\frac{1}{2}}du = -\frac{1}{2} \times \frac{2}{3}u^{\frac{3}{2}} + C = -\frac{1}{3}(1 - x^2)^{\frac{3}{2}} + C \)

例题10:计算\( \int \frac{e^{\arctan x}}{1 + x^2}dx \)(第一类换元法)

解:

设\( u = \arctan x \),则\( du = \frac{1}{1 + x^2}dx \):

\( \int e^u du = e^u + C = e^{\arctan x} + C \)

例题11:计算\( \int \cos^2 x \sin x dx \)(第一类换元法)

解:

设\( u = \cos x \),则\( du = -\sin x dx \):

\( \int u^2 (-du) = -\frac{1}{3}u^3 + C = -\frac{1}{3}\cos^3 x + C \)

例题12:计算\( \int \frac{1}{x \ln x}dx \)(第一类换元法)

解:

设\( u = \ln x \),则\( du = \frac{1}{x}dx \):

\( \int \frac{1}{u}du = \ln|u| + C = \ln|\ln x| + C \)

例题13:计算\( \int \csc x dx \)(第一类换元法)

解:

变形被积函数:\( \csc x = \frac{\csc x (\csc x - \cot x)}{\csc x - \cot x} = \frac{\csc^2 x - \csc x \cot x}{\csc x - \cot x} \)

设\( u = \csc x - \cot x \),则\( du = (-\csc x \cot x + \csc^2 x)dx \):

\( \int \frac{du}{u} = \ln|u| + C = \ln|\csc x - \cot x| + C \)

例题14:计算\( \int \frac{1}{\sqrt{x^2 + a^2}}dx \)(\( a > 0 \),第二类换元法-三角代换)

解:

设\( x = a\tan t \)(\( t \in (-\frac{\pi}{2}, \frac{\pi}{2}) \)),则\( dx = a\sec^2 t dt \),\( \sqrt{x^2 + a^2} = a\sec t \):

\( \int \frac{a\sec^2 t}{a\sec t}dt = \int \sec t dt = \ln|\sec t + \tan t| + C \)

由\( \tan t = \frac{x}{a} \)得\( \sec t = \frac{\sqrt{x^2 + a^2}}{a} \),代入得:

\( \ln|\frac{\sqrt{x^2 + a^2}}{a} + \frac{x}{a}| + C = \ln|x + \sqrt{x^2 + a^2}| + C_1 \)(\( C_1 = C - \ln a \))

例题15:计算\( \int \frac{1}{x \sqrt{x^2 - 1}}dx \)(\( x > 1 \),第二类换元法-三角代换)

解:

设\( x = \sec t \)(\( t \in (0, \frac{\pi}{2}) \)),则\( dx = \sec t \tan t dt \),\( \sqrt{x^2 - 1} = \tan t \):

\( \int \frac{\sec t \tan t}{\sec t \tan t}dt = \int 1dt = t + C = \arccos \frac{1}{x} + C \)

例题16:计算\( \int \sqrt{1 - x^2}dx \)(第二类换元法-三角代换)

解:

设\( x = \sin t \)(\( t \in [-\frac{\pi}{2}, \frac{\pi}{2}] \)),则\( dx = \cos t dt \),\( \sqrt{1 - x^2} = \cos t \):

\( \int \cos^2 t dt = \int \frac{1 + \cos 2t}{2}dt = \frac{1}{2}t + \frac{1}{4}\sin 2t + C = \frac{1}{2}\arcsin x + \frac{1}{2}x\sqrt{1 - x^2} + C \)

例题17:计算\( \int \frac{1}{1 + \sqrt{2x + 1}}dx \)(第二类换元法-根式代换)

解:

设\( t = \sqrt{2x + 1} \),则\( x = \frac{t^2 - 1}{2} \),\( dx = t dt \):

\( \int \frac{t}{1 + t}dt = \int (1 - \frac{1}{1 + t})dt = t - \ln|1 + t| + C = \sqrt{2x + 1} - \ln(1 + \sqrt{2x + 1}) + C \)

例题18:计算\( \int \frac{x}{\sqrt{3 - 2x}}dx \)(第二类换元法-根式代换)

解:

设\( t = \sqrt{3 - 2x} \),则\( x = \frac{3 - t^2}{2} \),\( dx = -t dt \):

\( \int \frac{\frac{3 - t^2}{2}}{t}(-t dt) = \frac{1}{2}\int (t^2 - 3)dt = \frac{1}{6}t^3 - \frac{3}{2}t + C = \frac{1}{6}(3 - 2x)^{\frac{3}{2}} - \frac{3}{2}\sqrt{3 - 2x} + C \)

例题19:计算\( \int \frac{1}{x^3 \sqrt{x^2 - 4}}dx \)(\( x > 2 \),第二类换元法-倒代换)

解:

设\( x = \frac{1}{t} \),则\( dx = -\frac{1}{t^2}dt \):

\( \int \frac{1}{(\frac{1}{t})^3 \sqrt{(\frac{1}{t})^2 - 4}}(-\frac{1}{t^2})dt = -\int \frac{t^3}{\sqrt{1 - 4t^2}}dt \)

设\( u = 1 - 4t^2 \),则\( t^2 = \frac{1 - u}{4} \),\( t dt = -\frac{1}{8}du \):

\( -\int \frac{t^2 \cdot t}{\sqrt{u}}dt = -\int \frac{\frac{1 - u}{4}}{\sqrt{u}}(-\frac{1}{8}du) = \frac{1}{32}\int (u^{-\frac{1}{2}} - u^{\frac{1}{2}})du = \frac{1}{16}\sqrt{u} - \frac{1}{48}u^{\frac{3}{2}} + C \)

回代得:\( \frac{\sqrt{x^2 - 4}}{16x^2} + \frac{(x^2 - 4)^{\frac{3}{2}}}{48x^3} + C \)

例题20:计算\( \int \frac{1}{(1 + x^2)^2}dx \)(第二类换元法-三角代换)

解:

设\( x = \tan t \),则\( dx = \sec^2 t dt \),\( 1 + x^2 = \sec^2 t \):

\( \int \frac{\sec^2 t}{\sec^4 t}dt = \int \cos^2 t dt = \frac{1}{2}t + \frac{1}{4}\sin 2t + C = \frac{1}{2}\arctan x + \frac{x}{2(1 + x^2)} + C \)

七、分部积分法

当被积函数是两类不同函数的乘积,换元法难以奏效时使用。设\( u = u(x) \)、\( v = v(x) \)具有连续导数,分部积分公式为\( \int u dv = uv - \int v du \)。关键是合理选择\( u \)和\( dv \),遵循“反、对、幂、指、三”的优先级(反三角函数、对数函数优先选\( u \),指数函数、三角函数优先选\( dv \))。

例题21:计算\( \int x \cos 2x dx \)

解:

设\( u = x \),\( dv = \cos 2x dx \),则\( du = dx \),\( v = \frac{1}{2}\sin 2x \):

\( \int x \cos 2x dx = \frac{1}{2}x \sin 2x - \frac{1}{2}\int \sin 2x dx = \frac{1}{2}x \sin 2x + \frac{1}{4}\cos 2x + C \)

例题22:计算\( \int x^2 e^{-x} dx \)

解:

设\( u = x^2 \),\( dv = e^{-x} dx \),则\( du = 2x dx \),\( v = -e^{-x} \):

\( -x^2 e^{-x} + 2\int x e^{-x} dx \)

再对\( \int x e^{-x} dx \)分部积分,设\( u = x \),\( dv = e^{-x} dx \),得\( -x e^{-x} - e^{-x} + C \),代入得:

\( -x^2 e^{-x} + 2(-x e^{-x} - e^{-x}) + C = -e^{-x}(x^2 + 2x + 2) + C \)

例题23:计算\( \int \ln x dx \)

解:

设\( u = \ln x \),\( dv = dx \),则\( du = \frac{1}{x}dx \),\( v = x \):

\( x \ln x - \int 1dx = x \ln x - x + C \)

例题24:计算\( \int \arcsin x dx \)

解:

设\( u = \arcsin x \),\( dv = dx \),则\( du = \frac{1}{\sqrt{1 - x^2}}dx \),\( v = x \):

\( x \arcsin x - \int \frac{x}{\sqrt{1 - x^2}}dx \)

设\( t = 1 - x^2 \),则\( \int \frac{x}{\sqrt{1 - x^2}}dx = -\frac{1}{2}\int t^{-\frac{1}{2}}du = -\sqrt{t} + C \),代入得:

\( x \arcsin x + \sqrt{1 - x^2} + C \)

例题25:计算\( \int e^x \cos x dx \)

解:

设\( u = \cos x \),\( dv = e^x dx \),则\( du = -\sin x dx \),\( v = e^x \):

\( e^x \cos x + \int e^x \sin x dx \)

对\( \int e^x \sin x dx \)分部积分,设\( u = \sin x \),\( dv = e^x dx \),得\( e^x \sin x - \int e^x \cos x dx \),代入整理:

\( \int e^x \cos x dx = e^x \cos x + e^x \sin x - \int e^x \cos x dx \)

移项得:\( 2\int e^x \cos x dx = e^x (\sin x + \cos x) + C_1 \),即\( \int e^x \cos x dx = \frac{1}{2}e^x (\sin x + \cos x) + C \)

例题26:计算\( \int x \tan^2 x dx \)

解:

利用\( \tan^2 x = \sec^2 x - 1 \),得\( \int x (\sec^2 x - 1)dx = \int x \sec^2 x dx - \int x dx \)

对\( \int x \sec^2 x dx \)分部积分,设\( u = x \),\( dv = \sec^2 x dx \),得\( x \tan x - \int \tan x dx \),而\( \int \tan x dx = -\ln|\cos x| + C \),因此:

\( x \tan x + \ln|\cos x| - \frac{1}{2}x^2 + C \)

例题27:计算\( \int x^3 \ln x dx \)

解:

设\( u = \ln x \),\( dv = x^3 dx \),则\( du = \frac{1}{x}dx \),\( v = \frac{1}{4}x^4 \):

\( \frac{1}{4}x^4 \ln x - \frac{1}{4}\int x^3 dx = \frac{1}{4}x^4 \ln x - \frac{1}{16}x^4 + C \)

例题28:计算\( \int \text{arccot} x dx \)

解:

设\( u = \text{arccot} x \),\( dv = dx \),则\( du = -\frac{1}{1 + x^2}dx \),\( v = x \):

\( x \text{arccot} x + \int \frac{x}{1 + x^2}dx = x \text{arccot} x + \frac{1}{2}\ln(1 + x^2) + C \)

例题29:计算\( \int \ln(x + \sqrt{1 + x^2})dx \)

解:

设\( u = \ln(x + \sqrt{1 + x^2}) \),\( dv = dx \),则\( du = \frac{1}{\sqrt{1 + x^2}}dx \),\( v = x \):

\( x \ln(x + \sqrt{1 + x^2}) - \int \frac{x}{\sqrt{1 + x^2}}dx = x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + C \)

例题30:计算\( \int x^2 \sin 2x dx \)

解:

设\( u = x^2 \),\( dv = \sin 2x dx \),则\( du = 2x dx \),\( v = -\frac{1}{2}\cos 2x \):

\( -\frac{1}{2}x^2 \cos 2x + \int x \cos 2x dx \)

由例题21知\( \int x \cos 2x dx = \frac{1}{2}x \sin 2x + \frac{1}{4}\cos 2x + C \),代入得:

\( -\frac{1}{2}x^2 \cos 2x + \frac{1}{2}x \sin 2x + \frac{1}{4}\cos 2x + C \)

数学基础 : 小学数学、初中数学、高中数学、高等数学